首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transformation behavior of near-equiatomic NiTi containing 0, 10, and 20 vol pct TiC particulates is investigated by dilatometry. Undeformed composites exhibit a macroscopic transformation strain larger than predicted when assuming that the elastic transformation mismatch between the matrix and the particulates is unrelaxed, indicating that the mismatch is partially accommodated by matrix twinning during transformation. The thermal recovery behavior of unreinforced NiTi which was deformed primarily by twinning in the martensite phase shows that plastic deformation by slip increases with increasing prestrain, leading to (1) a decrease of the shape-memory strain on heating, (2) an increase of the two-way shape-memory strain on cooling, (3) a widening of the temperature interval over which the strain recovery occurs on heating, and (4) an increase of the transformation temperature hysteresis. For NiTi composites, the recovery behavior indicates that most of the mis-match during mechanical deformation between the TiC particulates and the NiTi matrix is relaxed by matrix twinning. However, some relaxation takes place by matrix slip, resulting in the following trends with increasing TiC content at constant prestrain: (1) decrease of the shape-memory strain on heating, (2) enhancement of the two-way shape-memory strain on cooling, and (3) broadening of the transformation interval on heating. K.L. FUKAMI-USHIRO, formerly Graduate Student, Department of Materials Science and Engineering, Massachusetts Institute of Technology  相似文献   

2.
Combustion synthesis (SHS) coupled with a quasi-isostatic densification step was employed to produce dense NiTi-TiC composites. The synthesis and characterization of five composites are presented, including ceramic-intermetallic (≥50 pct ceramic) composites and intermetallic-ceramic (≥50 pct intermetallic) composites. Particle size, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analysis was conducted to characterize the microstructure of the composites. Refractory TiC and NiTi intermetallic phases become more stoichiometric and the TiC particle size decreases with increasing intermetallic content. Micro- and nanoindentation and quasi-static compression tests were performed, to determine mechanical and material properties. The Vickers hardness decreases as the matrix shifts from ceramic to intermetallic. Modulus and compressive strength decreases with increasing amounts of Ni-Ti intermetallic. The SEM photomicrographs of fractured surfaces are included.  相似文献   

3.
The transformation behavior of titanium-rich NiTi containing 0 vol pet, 10 vol pct, and 20 vol pct equiaxed TiC particles was studied by differential scanning calorimetry. The thermoelastic phase transformation of the unreinforced matrix exhibits multiple steps. Upon multiple transformation cycles, the rhombohedral phase (R phase) appears and all transformation temperatures decrease. The TiC particles inhibit the R phase and also lower some of the transformation temperatures. These effects can be explained by the internal misfit stresses resulting from both thermal expansion and transformation mismatch between matrix and reinforcement. The measured transformation enthalpy of bulk and reinforced NiTi is discussed in light of a thermodynamical model, taking into account the elastic energy stored upon cycling. The model indicates that a significant fraction of the matrix is stabilized and thus does not contribute to the transformation enthalpy. Formerly Postdoctoral Fellow, Department of Materials Science and Engineering, Massachusetts Institute of Technology.  相似文献   

4.
Neutron diffraction measurements of internal elastic strains and crystallographic orientation were performed during compressive deformation of martensitic NiTi containing 0 vol pct and 20 vol pct TiC particles. For bulk NiTi, some twinning takes place upon initial loading below the apparent yield stress, resulting in a low apparent Young's modulus; for reinforced NiTi, the elastic mismatch from the stiff particles enhances this effect. However, elastic load transfer between matrix and reinforcement takes place above and below the composite apparent yield stress, in good agreement with continuum mechanics predictions. Macroscopic plastic deformation occurs by matrix twinning, whereby (1 0 0) planes tend to align perpendicular to the stress axis. The elastic TiC particles do not alter the overall twinning behavior, indicating that the mismatch stresses associated with NiTi plastic deformation are fully relaxed by localized twinning at the interface between the matrix and the reinforcement. For both bulk and reinforced NiTi, partial reverse twinning takes place upon unloading, as indicated by a Bauschinger effect followed by rubberlike behavior, resulting in very low residual stresses in the unloaded condition. Shape-memory heat treatment leads to further recovery of the preferred orientation and very low residual stresses, as a result of self-accommodation during the phase transformations. It is concluded that, except for elastic load transfer, the thermal, transformation, and plastic mismatches resulting from the TiC particles are efficiently canceled by matrix twinning, in contrast to metal matrix composites deforming by slip.  相似文献   

5.
The tensile properties of aluminum matrix composites containing SiC whiskers or particulate were investigated analytically and compared to experimental results. Two finite-element models were constructed and used for elastoplastic analysis. In both models, the SiC fibers are represented as longitudinally aligned cylinders in a three-dimensional array. The cylinder ends are transversely aligned in one model and staggered in the other. Using the models, the sensitivity of the predicted composite properties to the deformation characteristics of the matrix alloy was examined, and the general behavior of the models was validated. It was determined that both models are necessary to predict the overall composite stress-strain response accurately. The analytic results accurately predict: the observed composite stress-strain behavior; the experimentally observed increase in Young’s modulus and the work-hardening rate with increasing fiber volume content and aspect ratio; and the decrease and subsequent increase in proportional limit as the SiC volume fraction is increased. The models also predict that the transverse material properties should be insensitive to fiber aspect ratio. In addition, the model predicts the location of initial yielding and the propagation of the plastic region. These results offer insights into the deformation mechanisms of short fiber-reinforced composites.  相似文献   

6.
7.
8.
The structure and properties of electrodeposited Mn-rich Cu-Mn coatings were studied in order to assess their potential to provide sacrificial galvanic protection to steels. It is found that a small amount of codeposited copper can stabilize the ductile as-deposited centered tetragonal γ′ phase against roomtemperature recrystallization to the stable bcc α phase. The time to transformation is increasingly delayed with increasing copper content. Phase transformation of crystalline films does not follow the Johnson-Mehl-Avrami-Kolmogorov equation for nucleation and growth transformation. Amorphous coatings do not show any structural transformation at room temperature. Nanomechanical and tribological measurements showed that Cu-Mn coatings have a lower friction coefficient than reference Cd coatings. Cu codeposition reduces the coating’s hardness and elastic modulus and increases the resistance to plastic penetration with respect to pure Mn. Cu-Mn coatings show a barrier or passive behavior under anodic polarization, while the sacrificial characteristics are still preserved. The corrosion appears uniform, and the formation of MnO2 and Cu2O upon anodic polarization may account for the good corrosion performance of the coatings.  相似文献   

9.
10.
11.
The deformation and failure mechanisms under cyclic deformation in an 8090 Al-Li alloy reinforced with 15 vol pct SiC particles were studied and compared to those of the unreinforced alloy. The materials were tested under fully reversed cyclic deformation in the peak-aged and naturally aged conditions to obtain the cyclic response and the cyclic stress-strain curve. The peak-aged materials remained stable or showed slight cyclic softening, and the deformation mechanisms were not modified by the presence of the ceramic reinforcements: dislocations were trapped by the S′ precipitates and the stable response was produced by the mobile dislocations shuttling between the precipitates to accommodate the plastic strain without further hardening. The naturally aged materials exhibited cyclic hardening until failure, which was attributed to the interactions among dislocations. Strain localization and slip-band formation were observed in the naturally aged alloy at high cyclic strain amplitudes, whereas the corresponding composite presented homogeneous deformation. Fracture was initiated by grain-boundary delamination in the unreinforced materials, while progressive reinforcement fracture under cyclic deformation was the main damage mechanism in the composites. The influence of these deformation and damage processes in low-cycle fatigue life is discussed.  相似文献   

12.
13.
以非线性热弹性理论为基础,建立了考虑岩石冰胀效应的变物性本构方程,给出了干燥低温和饱和冻结状态下单轴压缩强度和力学特性参数随温度的变化关系.借助花岗岩在两种状态下的压缩试验结果,探讨了低温花岗岩的单轴压缩力学特性.饱和冻结状态下的抗压强度大于干燥低温状态的抗压强度,其相差量随着温度降低有增加趋势;在同种状态下抗压强度随温度降低呈增长趋势,增长率逐渐减小.低温附加强度主要由岩石基质热力效应所贡献,而由岩石孔隙冰胀效应引起的附加强度相对较小.花岗岩在干燥低温和饱和冻结状态下,变形模量均随温度的降低呈增大趋势,而泊松比变化相对较小.  相似文献   

14.
In Part I, it was found that (i) 2 vol.% admixture of reinforcing elements in PMMA (Jet) resin matrix had a significant beneficial effects on the mechanical properties, and (ii) among these, zirconia exhibited the greatest improvements in modulus of elasticity, transverse strength, toughness, and hardness number. Using the best combination (i.e., PMMA resin matrix and 2 vol.% ZrO2), exothermic temperature raise and polymerization shrinkage were further investigated. Deterioration in mechanical properties due to prolonged water sorption were also studied for 5 weeks. The following can be concluded: (1) By increasing liquid/powder ratio for PMMA control samples, the peak temperature occurrence was retarded by 3 min and raised by 8 degrees C. (2) The effect of admixed oxide particles to PMMA resin matrix or the heat generated during polymerization was not significant. (3) The polymerization volumetric shrinkage was influenced by the a mixture of particles, with increases as large as 0.9% (or 0.3% in linear shrinkage). (4) PMMA resin admixed with 2 vol.% of zirconia particles showed a continuous weight gain due to water sorption, mechanical properties appears to be increasing up to 1-week sorption, followed by rapid drop of all properties. (5) Autopolymerizing acrylic resins are a resin-resin composite material of pre-polymerized beads embedded in a newly formed acrylic matrix. The main fracture modality appears to occur through the matrix and at the interface, although some trans-beads fractures were identified. (6) It was suggested that incorporating certain type of oxide particles into the pre-polymerized beads would provide stronger resin matrix.  相似文献   

15.
Ternary alloys from the aluminum-rich corner of the Al-Cu-Ni system were unidirectionally solidified under a wide variety of growth conditions. Plane front solidification was achieved at sufficiently high thermal gradients and slow growth rates. Conditions necessary to cause planar interface breakdown in both two and three phase alloys compare well to those predicted by a simple constitutional supercooling criterion. Nonplanar microstructures obtained were cellular or dendritic and both single phase and two phase dendrites were observed. Microstructures of specimens solidified with planar and nonplanar fronts are discussed in terms of the ternary phase diagram and the solute “diffusion paths.” Formerly Research Assistant, Massachusetts Institute of Technology, Cambridge, Mass. 02139  相似文献   

16.
17.
Computational modeling programs incorporating the physics of powder deformation, fragmentation, and coalescence occurring during mechanical alloying (MA) are developed. The programs utilize the equations developed in part I of this series; equations predicting the extent of powder deformation during an effective impact in MA and those specifying criteria for powder particle fragmentation and coalescence. Two programs have been developed for these purposes. One, MAPI, considers the behavior of a single species with the option of adding dispersoids. The other, MAP2, considers two ductile species being welded to form a third, composite species. Applications of the programs to previous experimental data, and for the purpose of identifying the effect of material and process variables on alloying behavior, are provided in the article following this one. Formerly Graduate Student, Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903 Formerly Professor, Department of Materials Science and Engineering, University of Virginia  相似文献   

18.
In the second part of this paper, the microstructural evolution and mechanical properties of plain-carbon steel rods which have been subjected to known cooling conditions are described. Specifically, the isothermal phase transformation kinetics for the decomposition of austenite into ferrite and pearlite have been determined with a diametral dilatometer and characterized in terms of empirical coefficients in the Avrami equation. The continuous cooling transformation (CCT) start time, fraction ferrite, ferrite grain diameter, and pearlite interlamellar spacing have been quantified and correlated with steel composition and cooling rate. Tensile tests have been conducted to obtain yield strength (YS) and ultimate tensile strength (UTS), which, with literature data, have been related to the microstructure and composition of the steels. These correlations, which apply to both hypoeutectoid and eutectoid steels, have been incorporated in a mathematical model of the Stelmor process, to be described in Part III of this article.[441] Formerly Graduate Student, The University of British Columbia.  相似文献   

19.
The flexural strength, fracture toughness (KIC), creep behaviour and thermal shock of mullite-zirconia and mullite-zirconia-alumina composites obtained by reaction-sintering of zircon + alumina mixtures have been studied in the temperature interval ranging from room temperature to 1400°C. The results are discussed in terms of the microstructural features of the reaction-sintered composites.  相似文献   

20.
Institute of Materials Science, Academy of Sciences of the Ukraine, Kiev. Translated from Poroshkovaya Metallurgiya, No. 4(364), pp. 89–95, April, 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号