共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
基于空间邻域信息的二维模糊聚类图像分割 总被引:2,自引:0,他引:2
传统模糊C均值聚类(FCM)算法进行图像分割时仅利用了像素的灰度信息,并且使用对噪声较敏感的欧氏距离作为像素与聚类中心距离度量的标准,因此抗噪性能较差.为了克服传统FCM算法的局限性,本文提出了一种基于空间邻域信息的二维模糊聚类图像分割方法(2DFCM).该方法利用二维直方图描述的像素邻域关系属性,一方面为聚类提供较准确的初始聚类中心,从而避免聚类中的死点问题;另一方面通过提出聚类中心同时在像素值、像素邻域值二维方向上进行更新的思想,建立了包含邻域信息的新的聚类目标函数,实现了图像的分割.实验结果表明,这种方法抗噪能力强、收敛速度快,是一种有效的模糊聚类图像分割方法. 相似文献
10.
针对模糊C-均值算法对初始值的依赖,容易陷入局部最优值的缺点,本文提出将量子蚁群算法与FCM聚类算法结合,首先利用量子蚁群算法的全局性和鲁棒性以及快速收敛的优点确定图像的初始聚类中心和聚类个数,再将所得结果作为FCM聚类算法的初始参数,然后用FCM聚类算法对医学图像进行分割。实验结果表明,该方法有效解决了FCM算法对初始参数的依赖,克服了FCM算法及蚁群算法容易陷入局部极值的的缺点,而且在分割速度和精度上得到了较大提高。 相似文献
11.
图像分割是一种重要的和关键的图像分析技术,目的是把图像分成各具特性的区域并提取感兴趣的部分。在基于内容的图像检索中,要对图像特征进行提取,图像分割是其中一个重要的步骤。现在图像分割算法已经有很多,为提高图像检索效率,对JSEG算法进行改进,实验证明该算法有效提高图像检索效率。 相似文献
12.
目的为了提高激光三维成像系统中的图像质量,有效滤除图像中噪声,提出一种自适应均值漂移的图像滤波算法。方法在传统算法基础上对均值漂移滤波算法进行改进,选取领域内像素的均方差为控制参量对带宽矩阵h大小进行自适应调控。根据宽带矩阵h的大小,选择合适的像元值参与到计算均值过程中,以提高结果的计算精度。结果实验结果表明改进后的算法能够有效滤除图像中的噪声,提高图像清晰度。结论该算法具有良好的保边去噪特性。 相似文献
13.
改进的模糊阈值图像分割方法 总被引:4,自引:1,他引:4
提出了一种自适应的模糊阈值图像分割方法,通过预分割和直方图信息相结合的方法,解决了传统的模糊闽值图像分割法难以自动获取窗宽的困难;并针对模糊闽值图像分割方法不能适用于直方图呈单峰分布的图像的缺陷,提出了一个新的平滑迭代公式。该平滑迭代公式利用像素点的邻域信息使图像增强,再使用自适应的模糊阈值图像分割方法进行分割,可以拓宽模糊阈值图像分割方法的适用范围。实验结果表明,使用该方法的目标分割正确率达97.3%,显示了较高的分割精度和较强的鲁棒性。 相似文献
14.
15.
《中国新技术新产品》2021,(19)
作为数字图像处理的关键技术,图像分割在图像分析系统中发挥了不可忽视的作用。随着科学技术的不断进步,有很多不同的算法被应用到图像分割技术中,但是最常用的分析方法包括基于阈值的分割方法、基于区域的分割方法、基于特定理论的分割方法以及基于边缘的分割方法。该文主要利用MATLAB软件对基于边缘的分割算法和基于阈值图像的分割算法进行仿真分析。阈值分割技术的关键在于确定阈值,利用Otsu算法能够自动选取阈值,对图像进行分割;在边缘检测算法中,对4种算子(Roberts、Sobel、Prewitt和LOG)的分割结果进行图像分析可以得出,LOG检测算子得出的边缘检测结果最好。 相似文献
16.
17.
岩屑荧光录井是油气勘探过程中重要的工作之一,为了实现该工作的自动化,本文以模糊C均值聚类(FCM)理论为基础,选用目前运用广泛的HSI颜色系统,针对荧光录井过程中生成的岩屑荧光数字图像提出了三维空间的颜色分类方案。该方案首先将图像从RGB色彩空间转换成HSI空间,并根据人眼视觉特点调整HSI各分量取值范围,同时通过提取不重复HSI颜色空间点阵的方法,提高聚类速度和聚类效果,解决超高清图像聚类速度慢的问题。最后通过人工油性判断和自动聚类分析指明不同荧光颜色(聚类中心)所代表的油性和含油比例,通过实验证明该方法能够满足生产过程中荧光图像自动识别分析的需要。 相似文献
18.
19.
边界噪声检测耦合差分曲率驱动的脉冲噪声图像降噪 总被引:1,自引:1,他引:0
目的提出边界识别噪声检测耦合差分曲率驱动扩散模型的脉冲噪声图像降噪算法,用于高密度(≥50%)脉冲噪声的消除。方法基于传统边界识别噪声检测BDND,定义噪声像素分类规则,设计新的边界识别噪声检测M-BDND机制;定位噪声边界,精确识别噪声像素点,形成噪声区域与完好区域;利用噪声像素点的周边信息形成掩码,对其进行修复,有效填补噪声像素点,而在完好区域只将像素点进行复制;构造了差分曲率驱动扩散模型控制噪声像素区域的扩散过程,完成图像复原,并对该模型进行了数值分析。结果与当前图像降噪技术相比,对于等密度随机值脉冲噪声而言,提出算法的误检率与虚警率更低;在噪声密度高达90%时,仍然具有可接受的降噪效果,能够更好地保留原图的边缘与细节特征,且复原图像的一维行距像更好,与真实图像的吻合程度高。结论该算法可用于高密度脉冲噪声的图像降噪处理。 相似文献