首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对表层脱立方相梯度硬质合金的研究成果进行了总结。系统地介绍了化学成分、原料粒度、烧结气氛对表层脱立方相梯度硬质合金微观组织、元素分布和性能的影响,概括了表层脱立方相梯度硬质合金作为涂层基体应用及后续涂层梯度硬质合金刀具切削加工应用,并指出研究表层脱立方相梯度硬质合金表面处理技术是挖掘其应用潜力的重要方向。  相似文献   

2.
廖诗兰 《中国钨业》2009,24(6):35-38
采用定量金相观察分析具有梯度结构硬质合金涂层刀片的微观结构,对梯度结构硬质合金基体及其涂层的构成进行了探讨。结果表明,梯度结构硬质合金基体组织的外层(与涂层的结合层)厚度为30μm左右。基体组织的孔隙度为A02、B00、C00。样品具有特殊的涂层结构,其中一工作面为两层涂层,另一工作面为三层涂层。两层涂层的涂层(Al2O3)厚度为4μm,内层(TiCN)厚度为8μm;三层在两层涂层的基础上增加了一层2μm的(TiN)涂层。WC平均晶粒度为1.24μm,复式碳化物的平均晶粒度为0.74μm,钴相呈均匀分布。实验结果为提高和优化梯度结构硬质合金涂层刀片性能提供了有益的依据。  相似文献   

3.
以TiN作为N源,采用传统粉末冶金法,一步烧结制备脱β层梯度WC-TiC-TaC-8.0Co硬质合金,利用扫描电镜等手段对合金的微观组织进行观察与分析,研究TiN添加量对合金物理与力学性能、微观组织及脱β层厚度的影响,并进行切削试验。结果表明:TiN添加量(质量分数,下同)在0~2.0%范围内,随TiN添加量增加,合金的密度、矫顽磁力以及硬度等无明显差异,但脱β层厚度明显增大。随TiN含量从0上升到2.0%,脱β层厚度从0增加到32.7μm。切削试验表明:TiN含量为1.0%时,涂层后硬质合金刀片具有最佳的车削寿命和抗冲击综合性能。  相似文献   

4.
在氮气气氛、高压条件下,利用等离子渗氮技术于刀具用硬质合金刀片表面制备氮化物涂层。利用X射线衍射仪(XRD)表征涂层物相,显微硬度计测试涂层显微硬度,扫描电镜(SEM)表征涂层表面及截面微观形貌。通过对比硬质合金试样和涂层试样的摩擦系数,衡量涂层耐磨性能;通过观察摩擦磨损实验后表面微观形貌,研究硬质合金和涂层试样的摩擦磨损机理。结果表明:涂层物相以TiN为主,层厚5μm左右;涂层与基体间紧密结合,无明显间隙与裂纹;硬质合金基体的摩擦系数在0.4左右,且出现较大波动,而涂层摩擦系数稳定在0.2左右。在硬质合金表面制备的等离子渗氮涂层可有效提高基体的耐磨性能。  相似文献   

5.
采用不含氮硬质合金原料,通过在梯度烧结工艺之前添加一步微压氮化烧结工艺制备脱β层梯度硬质合金;采用SEM观察合金表层的组织结构,图像分析工具测量脱β层的厚度。结果表明:在添加微压(氮气分压为0.5kPa)氮化烧结工艺的情况下,编号Co-8梯度硬质合金在1 420、1 450、1 480℃,1h的烧结工艺下形成脱β层的厚度分别为8、13、24μm;而编号Co-6梯度硬质合金在1 420℃时所形成的脱β层的厚度接近于零,在其他两种烧结温度下,所形成的脱β层的厚度也明显低于编号Co-8梯度硬质合金。与添加Ti(C,N)的原料相比,在相同的烧结工艺下,本文所采用的不含氮原料制备梯度硬质合金的脱β层厚度也明显降低。  相似文献   

6.
本文通过一步烧结法制备了三种不同含碳量的WC-Ti(C,N)-(Ti,W)C-(Ta,Nb)C-Co脱β层硬质合金,通过扫描电镜(SEM),电子探针微区分析仪(EPMA)分析合金的微观组织和成分分布,以及测定维氏硬度HV30,断裂韧性KIC等性能指标,研究碳含量对其微观组织和物理力学性能的影响,研究结果表明:在三个合金的表层均形成了缺Ti,Ta,Nb的立方相,而富Co粘结相的脱β层。微量的C含量变化对合金的组织和性能产生重要的影响,合金的脱β层厚度和WC的平均晶粒度均随着C含量的增加而增大。随着碳含量的增加,维氏硬度HV30降低,断裂韧性KIC增加。  相似文献   

7.
为了研究烧结气氛对硬质合金脱β层厚度的影响,本研究以WC、Co、Ti(C,N)、(Ti,W)C和(Ta,Nb)C粉末为原料,通过脱氮气氛烧结制备了WC-(Ti,W)C-Ti(C,N)-(Ta,Nb)C-Co梯度硬质合金,并分析了Ti(C,N)含量和烧结碳气氛对合金微观组织与性能的影响规律。结果表明,添加Ti(C,N)将促进立方相向合金内部扩散,钴往外的扩散驱动力增强,在合金表面形成岛状或层状覆钴现象。烧结气氛主要是通过合金表面的碳含量来影响液相和立方相的迁移来影响脱β层的形成,随烧结炉碳气氛升高,脱β层厚度减少,添加0.9%Ti(C,N)制备的梯度硬质合金在低、中、高3种碳浓度气氛中脱β层厚度分别为20.2μm、10.7μm、0μm,因此,碳浓度气氛是影响脱β层厚度的一个重要因素。  相似文献   

8.
采用不含氮原料及微压氮化+真空脱氮烧结工艺制备脱β层梯度硬质合金,并采用扫描电镜及自带能谱仪、电子探针微区分析技术分析不同烧结阶段下硬质合金样品的微观组织结构及成分分布,研究烧结过程中微观组织结构演变规律,总结缺立方相层的形成机制,同时分析富Co层的形成机理。结果表明:在微压氮化阶段,硬质合金中的TiC相被氮化生成了Ti(C,N)相;在之后的脱氮烧结阶段,Ti(C,N)相溶解在液相中,并且发生氮钛的耦合扩散,导致缺立方相层的形成。Co元素的空位扩散及液相迁移机制联合作用形成了富Co层;冷却过程中液相迁移导致了富Co层内部不同区域之间Co含量的差异。  相似文献   

9.
本文通过改变原料中Ti(C,N)的含量(0.5%和1.5%)(质量分数,下同),采用一步烧结法制备了WC-Ti(C,N)-Nb C-Co脱β层硬质合金,并通过化学气相沉积(CVD)技术制备Ti N/MT-Ti CN/Al2O3涂层硬质合金,研究的目的是比较Ti(C,N)含量的微量变化对其脱β层硬质合金的微观组织和物理力学性能,以及其涂层刀具车削45#钢的使用寿命的影响。研究结果表明:在两种合金的表层均形成了脱β层,随着Ti(C,N)含量从0.5%增加至1.5%,脱β层厚度从11μm增加至35μm,另外,WC平均晶粒度从1.97μm减少至1.60μm;矫顽磁力HC和维氏硬度HV30提高,合金密度D和断裂韧性KIC降低。涂层刀片的切削试验结果表明:高Ti(C,N)含量制备的涂层刀片的耐磨性略微降低,而抗冲击性能明显提高。  相似文献   

10.
为了提高包壳用锆合金的耐高温腐蚀性能,采用等离子增强物理气相复合沉积(PPC)技术在Zr-4合金试样表面制备了厚度为15μm的Cr涂层,并对其性能进行了表征。通过在(420±3)℃,(10.3±0.7)MPa高温高压蒸汽中进行100 d腐蚀试验,对比了Zr-4基体和Cr涂层试样在高温蒸汽中腐蚀100 d后的耐蚀性能,利用X射线衍射(XRD)分析了涂层的物相,利用扫描电镜(SEM)分析了试样腐蚀后的氧化层厚度及断面形貌,利用能谱(EDS)线扫描分析了腐蚀后试样断面的元素成分,利用金相显微镜(OM)检测试样内部氢化物分布并采用气体分析法测量氢含量。结果表明:采用PPC技术制备的Cr涂层均匀致密,无裂纹、孔洞等缺陷;经高温高压蒸汽腐蚀后,试样表面Cr涂层氧化加重,随着腐蚀时间的延长,基体表面氧化膜厚度逐渐增加,而Cr涂层会发生减薄现象,但剩余涂层连续致密,且基体未出现氧化腐蚀现象,说明Cr涂层具有良好的耐蚀性能;涂层试样比基体具有更低的腐蚀增重率,说明Cr涂层能对基体起到保护作用;Cr涂层部分涂覆的试样涂层与基体过渡区基体侧出现氧化层,但氧化层厚度均匀一致,说明Cr涂层并未加速基体的腐蚀;与...  相似文献   

11.
采用1步烧结法,在原料粉末中添加中颗粒Ti(C,N)的情况下制备表面含脱β层的梯度结构硬质合金。分别采用扫描电镜(SEM)、X射线衍射(XRD)及能谱技术(EDS)分析合金样品的微观组织、相组成及成分分布。结果表明,在1 420℃下真空烧结时,初始成分不含Ti(C,N)的合金样品的组织为均质结构,由WC,Co基粘结相及(Ti,W)C三相组成;初始成分含有Ti(C,N)的合金样品表层形成了脱β层,脱β层中仅存在WC,Co基粘结相2相,芯部的组织除WC,Co基粘结相及(Ti,W)C 3相以外,还存在少量近球形未溶解的Ti(C,N)核心。脱β层既是1个缺立方相层,也是1个富钴层。  相似文献   

12.
TiN涂层硬质合金在空气中的氧化行为   总被引:1,自引:0,他引:1  
采用阴极弧蒸发技术沉积TiN涂层硬质合金,利用XRD、SEM和显微硬度计分析TiN涂层硬质合金氧化前后的物相组成、组织形貌和显微硬度的变化,并对其700℃和800℃抗氧化性能进行测试。研究结果表明:TiN涂层硬质合金氧化后出现边缘开裂,生成大量的氧化物;TiN涂层硬质合金的显微硬度在氧化过程中随着氧化温度的提高和氧化时间的延长不断降低。TiN涂层硬质合金氧化破损过程为局部不均匀氧化,O2通过氧化层或缺陷进入基体,造成基体氧化,体积发生膨胀,边缘处涂层应力集中,发生开裂,进而使基体发生氧化。  相似文献   

13.
硬质合金复合涂层的结合强度与失效机理   总被引:2,自引:0,他引:2  
通过4种硬质合金基体和3种TiN/TiCN/Al<,2>O<,3>TiN复合涂层的组合,采用化学气相沉积(CVD)法制备12种涂层顾质合金样品,借助划痕试验机、扫描电镜和能谱仪测定涂层与基体的结合强度,观察划痕的形貌,测定划痕的微区成分.结果表明,基体成分和WC的晶粒度,以及涂层的成分和厚度对涂层与基体的结合强度有明显...  相似文献   

14.
C/C复合材料SiC涂层裂纹形貌及分布的研究   总被引:1,自引:0,他引:1  
由于涂层与C/C复合材料之间热膨胀系数不匹配,当冷却至室温时在高温下制备的抗氧化涂层会产生裂纹,为分析涂层裂纹的组态,通过在碳毡和真空穿刺两种C/C复合材料基体上制备单层、双层SiC涂层来研究涂层裂纹的形貌及分布.利用金相显微镜和扫描电镜观察两种涂层裂纹的形貌和分布,解释了裂纹与涂层所受热应力及基体原有缺陷的关系,利用XRD分析了单层和双层涂层的成分,说明了不同类型SiC结构与涂层裂纹之间的联系.结果表明涂层裂纹分布及裂纹宽度与基体纤维方向有关;随着涂层厚度增大,微裂纹数量减少;基体原有缺陷会导致涂层产生穿透性裂纹.  相似文献   

15.
通过调整稀释剂和加料量等工艺参数,利用自蔓延-离心法在铝板表面制备了熔覆质量较好的α-Fe(Al)涂层.利用X射线衍射分析涂层的相组成,扫描电镜观察涂层及涂层基体连接处的组织,能谱仪分析涂层及连接处的元素分布,显微硬度仪测量内衬层硬度.结果表明,涂层主要由α-Fe(Al)组成,组织均匀.涂层与基体形成了冶金结合,涂层与基体之间呈锯齿状,涂层与基体连接处生成FeAl2.涂层显微硬度为3.73±0.09 GPa,是基体的6倍,且分布均匀.  相似文献   

16.
胡希川 《冶金分析》2004,24(Z2):538-540
从实际生产过程中,对WC+TiC+TaC(NbC)+Co硬质合金涂层基体中粘结相的分布不均,加工中造成的Co相脱落对涂层刀具性能的影响进行了探讨  相似文献   

17.
以Ti、Al和Cr为靶材,采用阴极离子镀在YT14硬质合金刀具表面制备一层AlTiCrN涂层,通过扫描电镜、能谱仪和X射线衍射仪分析了其表面和界面形貌、化学元素组成和物相,并用线扫描和面扫描研究了涂层中化学元素在结合界面处扩散机理.用划痕法表征其界面层结合强度,对界面结合机理进行了讨论.AlTiCrN涂层的物相主要以AlN、CrN和TiN为主,涂层在(111)晶面具有很强的择优取向.涂层中Al、Ti、Cr和N原子数分数高于基体,在结合界面处呈阶梯状过渡分布,基体中C原子扩散进入TiN、AlN和CrN晶格点阵中,形成明显的扩散层.涂层结合界面为机械+扩散形式,其结合方式主要是由吸附结合、扩散结合和化合结合方式组成.划痕过程中涂层经历弹性变形、塑性变形和涂层剥离三个阶段,界面结合强度为59.2N.   相似文献   

18.
利用WC,Co,(Ti,W)C,Ti(C,N)等原料粉末,采用1步烧结法制备脱β层梯度硬质合金,利用扫描电镜观察合金表层的微观组织结构,采用电子探针微区分析技术(electron probe micro analysis,EPMA)定性分析合金表层的金属元素W、Ti、Co及轻元素C、N的分布规律,采用EPMA定量技术分析金属元素尤其是Co的复杂分布规律,并对其形成机制进行深入讨论。定性分析结果表明:脱β层内W元素的含量稍高于合金芯部的平均W含量;所有含Ti相均已完全脱除;脱β层不仅是缺立方相层,同时也是富Co层;脱β层中C元素的含量略有下降;N元素含量并不为零,某些区域甚至高于芯部。定量分析结果表明:脱β层中Ti元素含量基本为零,但在界面靠近芯部一侧Ti元素含量明显高于芯部的平均值;从合金表层至芯部依次存在低钴层、高钴层及贫钴层3个钴含量不同的区域。合金整个表层钴含量的复杂分布情况是由钴原子的空位扩散机制与液相迁移机制联合形成的。  相似文献   

19.
TiN和TiAlN涂层硬质合金的氧化和切削性能   总被引:3,自引:0,他引:3  
采用阴极弧蒸发涂层工艺在硬质合金基体上分别沉积TiN和TiAlN涂层。利用XRD、SEM和显微硬度计分析2种涂层硬质合金氧化前后的物相组成、组织形貌和显微硬度,并对2种涂层硬质合金刀片进行切削性能测试。研究结果表明:2种涂层硬质合金在不同温度氧化一定时间后出现边缘开裂,基体氧化物鼓出。TiAlN涂层硬质合金抗氧化性能优于TiN涂层硬质合金。2种涂层硬质合金的显微硬度随着氧化时间增加而减小。由于TiAlN涂层硬质合金具有良好的抗氧化性,所以随着切削速度提高,表现出更好的切削性能。  相似文献   

20.
采用阴极弧蒸发涂层工艺在硬质合金基体上沉积了TiN/AlTiN纳米多层涂层。利用光学显微镜、SEM、XRD、显微硬度计和划痕测试仪、纳米压痕仪,分析了涂层的组织形貌、纳米调制周期、化学成分、物相组成、结合强度和硬度,并对涂层硬质合金刀片进行了铣削合金钢的切削性能测试。研究结果表明:TiN/AlTiN纳米多层涂层具有致密的柱状晶结构,保留了AlTiN单层涂层的(200)择优取向。大尺寸熔滴Ti含量高、小尺寸熔滴Al含量高,涂层中Al含量低于靶材。调制周期为18.4 nm的TiN/AlTiN纳米多层涂层具有良好的结合强度(100 N)和高的硬度(28.2 GPa)。相同涂层厚度的情况下,TiN/AlTiN纳米多层涂层具有比同类单层涂层更高的耐磨性,表现出更好的切削性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号