首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用水热反应釜法制备碳量子点以及氯化亚砜功能化碳量子点,然后分别与用乙二醇还原的银纳米粒子进行复合,利用FTIR、TEM对样品进行表征,利用荧光分光光度计测试荧光谱,紫外-可见分光光度计测试吸收谱和甲基橙浓度。结果表明:碳量子点的平均粒径约3.5nm,类球形银纳米粒子的平均粒径约18nm。银纳米粒子和碳量子点复合催化剂能够使荧光猝灭,使可见光区的吸收增强。复合催化剂比单独的银纳米粒子和碳量子点的催化能力更好。银纳米粒子和碳量子点以1:2的比例复合时催化效率最高。氯化亚砜功能化的碳量子点与银纳米粒子复合能提高降解甲基橙的浓度和降解速率,12分钟内降解完50mL,50mg/L的甲基橙。  相似文献   

2.
高活性纳米二氧化钛光催化剂的溶胶-凝胶法制备和表征   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成了纳米二氧化钛光催化剂,利用X-射线衍射、原子力显微镜、紫外-可见分光光度计等测试技术研究了纳米二氧化钛的形态结构特征及其光催化性能,并探讨了甲基橙溶液的初始pH值和初始浓度、涂膜次数、光源种类、光照时间对光催化降解反应的影响机制.研究结果表明,采用紫外光源照射20min,纳米二氧化钛薄膜对甲基橙的光催化降解效率达到98%,纳米二氧化钛具有高光催化活性.  相似文献   

3.
采用简单的沉淀-光还原法合成了具有可见光催化降解有机物高活性的Ag@AgCl等离子共振光催化剂。采用扫描电镜、X射线能谱、透射电镜、XRD、紫外-可见漫反射光谱和XPS等手段对催化剂进行了表征。通过可见光下降解甲基橙进行光催化活性测试。结果显示,Ag@AgCl由于Ag纳米粒子的等离子共振效应而具有较强的吸收可见光性能。对光催化反应参数如投加量、光还原时间及pH值等进行了优化,在最优条件下,经过120 min可将83%的甲基橙降解。优异的光催化活性归因于银纳米颗粒的等离子共振效应。最后对光致电荷的分离机理进行了讨论。  相似文献   

4.
采用简单的沉淀-光还原法合成了具有可见光催化降解有机物高活性的Ag@AgCl等离子共振光催化剂。采用扫描电镜、X射线能谱、透射电镜、XRD、紫外-可见漫反射光谱和XPS等手段对催化剂进行了表征。通过可见光下降解甲基橙进行光催化活性测试。结果显示,Ag@AgCl由于Ag纳米粒子的等离子共振效应而具有较强的吸收可见光性能。对光催化反应参数如投加量、光还原时间及pH值等进行了优化,在最优条件下,经过120 min可将83%的甲基橙降解。优异的光催化活性归因于银纳米颗粒的等离子共振效应。最后对光致电荷的分离机理进行了讨论。  相似文献   

5.
Sn~(2+)掺杂TiO_2/Cu复合粒子的制备及可见光催化性能   总被引:2,自引:0,他引:2  
以钛酸丁酯为原料,利用胶溶-回流法在室温下制备具有可见光活性的Sn2+掺杂纳米TiO2/Cu复合粒子.FE-SEM观察表明,TiO2颗粒覆盖在铜粉表面形成纳米/微米复合结构.利用XPS确定复合粒子的表面元素状态,据此分析了Sn2+掺杂抑制TiO2晶粒长大的原因.UV-Vis吸收光谱分析表明,负载金属Cu后使半导体的吸收限明显红移,除紫外区的吸收之外,TiO2/Cu复合粒子在可见光区吸收带出现了522.5nm突跃波长.以甲基橙为模型化合物的降解实验显示出所制粉体良好的可见光活性.  相似文献   

6.
采用化学镀工艺,制备了催化性能优良的Au核壳结构纳米催化剂,表面Au颗粒粒径约为16nm,结构致密,单分散程度较高。利用扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-Vis),结合产H2量测试,研究了络合剂和还原剂的加入顺序对Au核壳结构纳米催化剂催化性能的影响。结果表明:先加络合剂所制备样品在亚甲基蓝脱色反应中表现出最高的反应速率和产氢量,具有最高的催化反应活性。较高的纳米Au颗粒粗糙度和Au负载量是其取得优良催化活性的原因。  相似文献   

7.
以钛酸四正丁酯和偏钨酸铵为原料,采用水热-模板法制备复合WO3-TiO2光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、比表面积(BET)和紫外-可见漫反射(UV-Vis DRS)等手段对催化剂的结构和光学性能进行表征。结果表明:WO3-TiO2复合半导体中的TiO2为锐钛矿晶型,焙烧后的WO3-TiO2呈中空球形结构,粒径在320 nm左右,且粒径分布均匀,其比表面积和平均孔径分别为40.95 m2/g和16.91 nm,WO3-TiO2复合半导体的紫外-可见吸收边带较TiO2的红移约50 nm,并在400~500 nm处有吸收。光降解甲基橙(MO)实验显示:经过80 min光照后,WO3-TiO2复合半导体在紫外和可见光下对甲基橙的降解率分别为99.2%和81%,而TiO2的仅为64%和25%,且在紫外和可见光下WO3-TiO2复合半导体的表观速率常数分别是TiO2的3.2和4.9倍左右。  相似文献   

8.
利用热分解方法在多孔钛上制备了Sb掺杂纳米SnO2电极。也研究了该电极降解甲基橙的电化学性能。SEM和XRD测试表明,在多孔钛基体上可获得完整的、无裂缝的涂层。无裂缝的涂层表面由粒径范围在80~230 nm的Sb掺杂SnO2纳米颗粒组成。HRTEM测试结果表明,SnO2纳米颗粒由5~6 nm细小颗粒构成。在其余条件相同的情况下,强化寿命试验表明,Sb掺杂纳米SnO2 /多孔Ti电极的寿命远大于致密钛基体上的电极。Sb掺杂纳米SnO2 /多孔Ti电极可将浓度为100 mg/L的甲基橙溶液降解到8 mg/L,显示出该电极具有很强的有机物污染物电催化降解能力。并指出采用简单的表面处理技术,将使多孔钛具有很高的潜力被应用到有机污水降解领域  相似文献   

9.
采用阳离子聚苯乙烯(PS)微球为模板,以钛酸丁酯为前驱体经溶胶凝胶反应制备了TiO2/PS复合微球,并经高温煅烧得到单分散中空TiO2纳米微球。采用扫描电镜(SEM)、透射电镜(TEM)、红外光谱仪(FT-IR)、X射线衍射仪(XRD)和紫外-可见分光光度计(UV-VIS DRS)对复合和中空微球的结构和光催化性能进行了表征。结果表明,经高温煅烧后TiO2中空微球尺寸相对于复合微球收缩了约25%,其粒径约为100 nm;中空微球壳层厚度可随钛酸丁酯用量而变化,壳层呈锐钛矿和金红石混晶结构,同时中空微球表现出比P25纳米TiO2更强的甲基橙光降解特性。  相似文献   

10.
采用阳离子聚苯乙烯(PS)微球为模板,以钛酸丁酯为前驱体经溶胶凝胶反应制备了TiO2/PS复合微球,并经高温煅烧得到单分散中空TiO2纳米微球。采用扫描电镜(SEM)、透射电镜(TEM)、红外光谱仪(FT-IR)、X射线衍射仪(XRD)和紫外-可见分光光度计(UV-VIS DRS)对复合和中空微球的结构和光催化性能进行了表征。结果表明,经高温煅烧后TiO2中空微球尺寸相对于复合微球收缩了约25%,其粒径约为100 nm;中空微球壳层厚度可随钛酸丁酯用量而变化,壳层呈锐钛矿和金红石混晶结构,同时中空微球表现出比P25纳米TiO2更强的甲基橙光降解特性。  相似文献   

11.
使用钛酸丁酯,乙酸,乙醇等材料,制备了含TiO_2纳米粒子浓缩液,其中TiO_2尺寸约250 nm,分配系数0.631。采用上述浓缩液,获得了纳米二氧化钛改性聚丙烯酸树脂(TiO_2/PA),并将其涂在铝箔上。通过紫外可见光谱和漫反射光谱(DRS),发现纳米二氧化钛有强烈的紫外线吸收效果。将改性添加剂加入浓缩液,并采用原位聚合方法,生成银纳米粒子,最后获香Ag/TiO_2/PA涂层。根据国标准GBT 1741-2007防霉测试,该Ag/TiO_2/PA外墙涂料没有观察到霉菌的明显生长。测试了Ag/TiO_2/PA对大肠杆菌和金黄色葡萄球菌的抗菌活性,质最低抑菌浓度(MIC)为7.285×10~(-5)mg/mL,银的抗菌效果显著,但是它不能消除细菌死亡后释放的有毒物质。对3种薄膜的光催化性能进行了测试,在464 nm的可见光下,Ag/TiO_2/PA外墙涂料存在时,甲基橙(MO)2.5 h后的脱色率接近50%,研究认为,该涂层的光催化能力来自于表面上的二氧化钛。  相似文献   

12.
以粒径约150 nm的碳球为模板,通过均相沉淀法制备出Y(OH)3/碳球复合微球,煅烧除去碳球模板,得到粒径约300 nm的纳米Y2O3空心球。通过傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和热失重分析(TG)以及X射线光电子能谱(XPS)等测试手段表征复合微球和纳米Y2O3空心球的形貌和结构。结果表明:空心球由立方晶系纳米Y2O3构成,粒径约为300 nm,壳厚度约为20 nm。  相似文献   

13.
采用浸渍法制备了Ce/纳米TiO2复合粉体,用XRD对复合粉体的晶体结构进行了表征.以紫外光照下降解甲基橙为目标,研究了Ce掺杂量和焙烧温度对Ce/纳米TiO2复合粉体的光催化能力的影响规律,并分析其机理.结果表明Ce掺杂能有效地提高纳米TiO2光催化降解甲基橙的能力,在400℃~700℃的焙烧温度下,纳米TiO2为锐钛型晶型结构,0.4%Ce(质量分数,下同)掺杂的复合粉体具有最好的光催化降解甲基橙的能力,其原因在于Ce4+掺杂有利于在TiO2纳米粒子中心和表面之间产生电势差,实现光生电子-空穴对的有效分离,因此存在一个最佳掺杂浓度使得光催化活性最高;焙烧温度对Ce/TiO2纳米复合粉体的影响依赖于Ce的掺杂量,低掺杂量时,较高的焙烧温度降解效果较好;高掺杂量时,较低的焙烧温度降解效果较好.  相似文献   

14.
采用浸渍法制备了Ce/纳米TiO2复合粉体,用XRD对复合粉体的晶体结构进行了表征.以紫外光照下降解甲基橙为目标,研究了Ce掺杂量和焙烧温度对Ce/纳米TiO2复合粉体的光催化能力的影响规律,并分析其机理.结果表明:Ce掺杂能有效地提高纳米TiO2光催化降解甲基橙的能力,在400℃~700℃的焙烧温度下,纳米TiO2为锐钛型晶型结构,0.4%Ce(质量分数,下同)掺杂的复合粉体具有最好的光催化降解甲基橙的能力,其原因在于Ce4+掺杂有利于在TiO2纳米粒子中心和表面之间产生电势差,实现光生电子-空穴对的有效分离,因此存在一个最佳掺杂浓度使得光催化活性最高;焙烧温度对Ce/TiO2纳米复合粉体的影响依赖于Ce的掺杂量,低掺杂量时,较高的焙烧温度降解效果较好;高掺杂量时,较低的焙烧温度降解效果较好.  相似文献   

15.
通过紫外光与热激发协同作用于[Ag(NH3)2]+络合离子与聚乙烯吡咯烷酮水溶液,制备高浓度、粒径分布均匀的胶态银纳米粒子,并用紫外-可见吸收光谱对银纳米粒子的形核与增长过程进行监控。结果表明:所制得银纳米粒子的等离子共振吸收峰对应的波长大约为419 nm。TEM结果显示,大多数银纳米粒子为球形,其平均粒径约为1.32 nm,标准偏差只有0.53 nm。所得产物的pH值几乎是中性,这使得该银胶有着更广泛的应用。  相似文献   

16.
超声条件下,在乙醇分散的3-氨丙基三乙氧基硅烷(APTES)功能化的磁性Fe3O4纳米粒子和氯铂酸的混合溶液中,滴加水合肼成功地制备了磁性Fe3O4/Pt复合纳米粒子。采用紫外吸收可见光谱(UV-Vis),电子能谱仪(EDS),透射电子显微镜(TEM),光电子能谱(XPS),超导量子干涉仪(SQUID)等方法对复合粒子的形态、结构、组成以及磁学性质进行了表征。结果表明:在此条件下制得的复合粒子粒度在50nm左右,室温下磁化强度可达17.2(A·m2)/kg。  相似文献   

17.
利用热分解方法在多孔钛上制备了Sb掺杂纳米SnO2电极。也研究了该电极降解甲基橙的电化学性能。SEM和XRD测试表明,在多孔钛基体上可获得完整的、无裂缝的涂层。无裂缝的涂层表面由粒径范围在80~230 nm的Sb掺杂SnO2纳米颗粒组成。HRTEM测试结果表明,SnO2纳米颗粒由5~6 nm细小颗粒构成。在其余条件相同的情况下,强化寿命试验表明,Sb掺杂纳米SnO2/多孔Ti电极的寿命远大于致密钛基体上的电极。Sb掺杂纳米SnO2/多孔Ti电极可将浓度为100 mg/L的甲基橙溶液降解到8 mg/L,显示出该电极具有很强的有机物污染物电催化降解能力。并指出采用简单的表面处理技术,将使多孔钛具有很高的潜力被应用到有机污水降解领域。  相似文献   

18.
铂纳米微粒的微波高压液相合成及光谱特性研究   总被引:8,自引:1,他引:8  
以柠檬酸钠作还原剂、聚丙烯酰胺作稳定剂 ,采用微波高压液相合成法制备了稳定的液相铂纳米粒子。TEM表明 ,铂纳米粒子呈球形 ,粒径约为 1 0nm。光谱分析表明聚丙烯酰胺在 2 1 6nm处有一个吸收峰 ;铂纳米粒子体系在紫外可见光波长范围内无吸收峰 ,随着波长的降低其吸收增大 ;浓度低于 8 0× 1 0 - 4 mol/LPt的铂纳米粒子体系在 40 0nm ,470nm、 5 1 0nm和 940nm产生 4个共振散射峰。  相似文献   

19.
采用焙烧法制备γ-Fe2O3之后,再利用3-氨丙基三乙氧基硅烷(APTES)对其表面进行功能化修饰,在其溶液体系中加入氯铂酸/氯化钯溶液,使游离的四价铂粒子/二价的钯离子吸附在磁性纳米粒子表面,与氨基化基团形成配位化合物,在超声化学作用下,利用水合肼将铂离子和钯离子还原为单质,制成γ-Fe2O3/M(M=Pt/Pd)复合磁敏催化剂纳米粒子。并采用Bruker Advanced-D8粉末衍射仪,带有选区电子衍射(SAED)的透射电子显微镜(TEM),高分辨透射电子显微镜(HRTEM)和带有超导量子干涉装置(SQUID)功能的磁性测量系统(MPMS)等对γ-Fe2O3粒子和γ-Fe2O3/M复合粒子磁性进行表征。结果表明:采用焙烧法制备的γ-Fe2O3磁性纳米粒子粒径在20 nm左右,制备的γ-Fe2O3/Pt和γ-Fe2O3/Pd复合粒子粒径分别在68和36 nm左右,室温下的磁化强度分别为29.4和31.2(A·m2)/kg,磁响应性能优越,可用于磁敏催化剂反应体系。这为贵金属Pt、Pd催化剂的回收与磁敏催化剂应用提供了新的思路。  相似文献   

20.
目的 提高Ti O2纳米粒子在复合光学薄膜中的分散性及光催化自清洁效率。方法 以通过St?ber法制备的粒径为70、140 nm的Si O2粒子与酸催化法制备的粒径为5 nm的Ti O2粒子为原料,分别使用硅烷偶联剂3–氨丙基三乙氧基硅烷(APTES,或KH550)与γ–缩水甘油醚氧丙基三乙氧基硅烷(GLYMO,或KH560)对2种纳米粒子进行表面改性。通过2种粒子表面的化学基团之间的化学键,将2种粒子进行偶联,形成了小粒子包覆大粒子的树莓形结构,并利用溶胶–凝胶法制备了光学涂层,通过紫外–可见分光光度计、红外光谱仪、激光粒度仪等多种表征设备对制备的复合纳米粒子及构筑的薄膜的结构、形貌和性能进行了分析。结果 粒径较小的Ti O2纳米粒子通过表面基团的反应均匀地包覆在粒径较大的Ti O2纳米粒子表面形成树莓形的复合结构,构筑的薄膜具有较高的透光率(>90%),较好地保留了玻璃基底的透过率,在紫外辐照条件下可在120 min内完全降解有机污染物,具有高效的光催化自清洁功能。水...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号