首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在Mg-9Li双相合金中添加0.5wt.% Ca元素,通过磁悬浮熔炼及铜模吸铸方法熔炼制备了共晶型Mg-9Li-0.5Ca合金。组织观察表明,常规Mg-9Li双相合金中形成的?-Mg相为粗大短板条状,取向随机、均匀无序分布于?-Li 基体中。而Mg-9Li-0.5Ca合金中形成了棒状交替排列的(?-Mg ?-Li)共晶团组织,在共晶团内?-Mg相呈长纤维状(长径比~100)、并以一定取向定向排列;相比于Mg-9Li合金,共晶?-Mg相纤维间距及纤维直径显著减小、组织明显细化,?-Mg相体积分数显著增加;同时,大量纳米、亚微米级Mg2Ca颗粒均匀弥散分布于?-Mg、?-Li晶粒内及两相界面上。由此导致具有该共晶组织的Mg-9Li-0.5Ca合金相比于Mg-9Li合金室温拉伸屈服强度提高3%、抗拉强度提高3.5%,伸长率提高50%,力学性能显著增加。分析表明,微量Ca元素的添加和铜模吸铸产生的较快的冷却速度,诱发Mg-9Li双相中细小(?-Mg ?-Li)共晶组织的形成,显著提高力学性能。  相似文献   

2.
采用Mg-10Al-27Ca中间合金的方式在Mg-9Li合金中添加微量Ca及Al元素,利用磁悬浮熔炼和铜模吸铸的方法熔炼制备了Mg-9Li-0.5Ca-0.18Al合金,考察微量Ca添加对Mg-9Li双相合金组织与力学性能影响。结果表明,相比于常规用Mg-30Ca、纯Al的Ca、Al添加方式,以Mg-10Al-27Ca中间合金方式添加Ca、Al元素对Mg-9Li双相合金中α-Mg相的组织细化和均匀化效果更为显著,形成的Al2Ca颗粒分布也更为均匀弥散。经Mg-10Al-27Ca中间合金方式添加0.5 wt%Ca后,合金的屈服强度、抗拉强度较Mg-9Li合金分别提高75.8%、52.5%,伸长率仅下降7.6%,合金的断裂韧性得到提高。Mg-10Al-27Ca中间合金中形成的细小、分布均匀的Al2Ca颗粒对α-Mg相优良的异质形核作用是Mg-9Li-0.5Ca(Mg-10Al-27Ca)-0.18Al合金组织细化、力学性能提高的根本原因。  相似文献   

3.
采用常规熔炼工艺制备Mg-9Li-5Gd-1Zr合金,考察了合金元素、均匀化热处理及ECAP挤压对Mg-9Li双相合金组织转变与力学性能的影响.结果表明,合金元素Gd和Zr能显著细化Mg-9Li双相合金中的α-Mg相,使其成为细小的条状,并均匀分布于基体中;与形成的具有取向分布的针状Mg3Gd对铸态合金起主要强化作用.均匀化热处理使β-Li基体晶粒明显长大;β-Li基体内的针状Mg3Gd相发生部分溶解、数量急剧减少;条状α-Mg相沿晶界偏聚长大,形成块状;合金强度较铸态略有下降,伸长率显著提高.ECAP一道次挤压在细化基体组织,改善组织均匀性的同时,导致均匀化处理合金中条状α-Mg相和针状Mg3Gd相破碎细化,诱导回溶的Mg3Gd相沿流变方向再次析出,合金较均匀化处理的强度、塑性均有所下降.  相似文献   

4.
为了提高镁锂合金的强度,采用普通重力铸造法制备了Mg-9Li-3.57Al-0.5Si-0.25Ca合金,考察该合金经均匀化热处理及轧制变形后的微观组织演变及力学行为变化。结果表明,铸态Mg-9Li-3.57Al-0.5Si-0.25Ca合金主要由β-Li基体、α-Mg相、以及分布于α-Mg/β-Li相界、基体的AlLi大颗粒,少量的Mg Li2Al、Mg_2Si和(Mg,Al)_2Ca相组成。合金经不同时间均匀化处理后,β-Li基体及界面处的AlLi大颗粒溶解,而在α-Mg相内析出纳米AlLi颗粒、并逐步长大;同时长条状α-Mg相从β-Li基体中析出并逐步合并长大。再经热轧后,α-Mg相拉长细化;α-Mg相内、相界面处大量AlLi相回溶,消除了界面处大颗粒聚集分布状态;同时在α-Mg相、β-Li基体内形成高密度均匀弥散分布的纳米颗粒强化相,合金得到了有效强化。热轧合金的力学性能大幅度提高,其抗拉强度、屈服强度、伸长率分别达到216 MPa、164 MPa和9.51%。  相似文献   

5.
采用普通重力铸造法制备了Mg-9Li-x Ca-0.5(Al-12.6Si)(x=0,0.25,0.5,1.0wt%)合金,研究了不同Ca含量对铸态Mg-9Li-0.5(Al-12.6Si)合金微观组织演变和力学性能的影响,分析了组织转变与力学行为之间的关系。结果表明,随着Ca含量的增加,Mg-9Li-0.5(Al-12.6Si)合金中的α-Mg相被细化,呈长条状,最后又长大;合金中存在一定数量的长径比高达5.06的长条状α-Mg相及颗粒相均匀弥散分布于β-Li基体和晶界上,其成分主要为Mg_2Ca、Mg_2Si。当含0.5wt%Ca时,合金的抗拉强度为134 MPa,伸长率为30.6%。  相似文献   

6.
采用锂盐熔剂保护熔铸Mg-8Li-4Zn-xGd(x=1,3,5)合金铸锭,研究钆含量对铸态合金组织和力学性能的影响。结果表明:Mg-8Li-4Zn-xGd合金基体由α-Mg(HCP)和β-Li(BCC)双相构成。随着钆含量的增加,Mg5Gd共晶相和Zn12Gd化合物相逐渐连成网状,将基体α+β双相隔离成20~40μm的等轴状或类似于铸铁中的共晶团状,可有效细化α-Mg相和连续的β-Li相;组织中大颗粒Mg2Zn11相弥散分布在β-Li相内,Mg51Zn20相分布在α-Mg晶界处;锌元素还可以在β-Li相中析出细小弥散分布的MgZn相,其数量随钆含量的增加而增加,可直接弥散强化β-Li相。此外,锌和钆对合金硬度的影响较大,随着钆含量的增加,合金的抗拉强度提高,但伸长率降低。  相似文献   

7.
采用显微组织观察、室温拉伸、硬度测试研究了冷轧变形量对Mg-9Li-1Zn合金在不同加工状态下显微组织和力学性能的影响。结果表明:铸态Mg-9Li-1Zn合金组织为α-Mg和β-Li的两相混合组织。随着冷轧变形量的增加,合金中α-Mg相和β-Li相逐渐被拉长,两相取向性越来越明显。在变形量80%的合金中,α-Mg相和β-Li相的组织明显细化,呈细条状分布。随着冷轧变形量的增加,合金的抗拉强度、硬度逐渐升高,伸长率逐渐降低。变形量80%的合金抗拉强度达到197MPa,硬度达到74.3HV,但伸长率降到9.0%。合金冷轧后200℃×1 h退火处理,合金的塑性明显改善,80%变形量轧制合金退火后伸长率达到24.1%。  相似文献   

8.
采用X射线衍射、光学显微镜、扫描电镜和拉伸测试研究Sn含量对铸态和挤压态Mg-8Li-3Al-(1,2,3)Sn(质量分数,%)合金显微组织和拉伸性能的影响。研究发现,铸态Mg-8Li-3Al-(1,2,3)Sn合金由α-Mg+β-Li双相基体、MgLiAl_2相和Li_2MgSn相组成。Sn含量的增加引起α-Mg枝晶细化和Li_2MgSn相含量增加。热挤压过程中,β-Li相发生完全动态再结晶,而α-Mg相发生不完全动态再结晶。随Sn含量增加,α-Mg相再结晶体积分数增加而再结晶晶粒平均尺寸减小。Sn含量的增加能够提高铸态Mg-8Li-3Al-(1,2,3)Sn合金的强度,但对塑性不利。热挤压使Mg-8Li-3Al-(1,2,3)Sn合金的拉伸性能明显提高,Mg-8Li-3Al-2Sn合金表现出最高的拉伸性能。  相似文献   

9.
通过显微组织观察、织构分析和拉伸测试等手段研究挤压比对双相Mg-8Li-6Zn-2Gd合金显微组织、织构和力学性能的影响。结果表明:均匀化态Mg-8Li-6Zn-2Gd合金中含有α-Mg、β-Li、Mg Li Zn、I相和W相。经热挤压后,共晶I相被碾碎成细小颗粒状,而W相保持原有块状形状。合金中α-Mg基体和β-Li基体在热挤压过程中均发生了动态再结晶(DRX),且晶粒随着挤压比的增加逐渐细化。经热挤压后,α-Mg基体的基面织构弱化和柱面织构增强是由于非基面滑移的激活;β-Li基体中形成明显的α和γ纤维织构主要与动态回复与动态再结晶相关。热挤压同时提升Mg-8Li-6Zn-2Gd合金的抗拉强度和伸长率,并在挤压比为16:1时获得最佳的综合力学性能。  相似文献   

10.
研究固溶态和挤压态Mg-xLi-3Al-2Zn-0.5Y(x=4,8,12,质量分数,%)合金的显微组织和腐蚀行为。结果表明,当锂含量从4%增加到12%,合金基体由α-Mg单相转变为α-Mg+β-Li双相,再转变为β-Li单相。Mg-4Li-3Al-2Zn-0.5Y和Mg-12Li-3Al-2Zn-0.5Y合金具有晶间腐蚀和点蚀的混合腐蚀特征,前者与沿晶界析出的AlLi相有关,后者与第二相与基体之间的高电位差有关。挤压态合金的耐蚀性优于固溶态合金。挤压态Mg-8Li-3Al-2Zn-0.5Y合金具有最低腐蚀速率(PW=(0.63±0.26)mm/a),主要归因于该合金的第二相分布更均匀、通过牺牲β-Li相形成的保护性α-Mg相和相对完整的更均匀分布的氧化膜。  相似文献   

11.
本文研究了La/Ce混合稀土对Mg-9Li-3Al-xRE(x=0、0.5、1、1.5、2 w.%)合金微观组织和力学性能的影响。在加入混合稀土的铸态合金中,形成了Al4RE相,并且Mg17Al12相的含量和α-Mg相的体积分数均被减少。此外,细化了α-Mg相并提高了合金的力学性能。但是,随着La/Ce混合稀土含量的增加,Al4RE相的尺寸增大,降低了合金的力学性能。在加入混合稀土的挤压态合金中,合金中Al4RE相挤压破碎至1-3μm,分布于β-Li基体中和α/β相之间。Mg-9Li-3Al-1.5RE合金获得最好的机械性能,最大抗拉强度和延伸率分别为228.3Mpa和20.8%,同铸态Mg-9Li-3Al相比分别提高了88.6%和197.4%。  相似文献   

12.
通过在强度较高而塑性不足的Mg-14Li-3Al-0.5Y合金基础上分别添加微量Ca、Mn元素,以研究Ca和Mn微合金化对铸态合金微观组织和力学性能的影响。结果发现,添加微量Ca使合金中生成了分布于β-Li晶界的半连续网状Al_2Ca相,消耗了具有固溶强化效果的Al元素,β-Li显著细化。微量Mn的加入使合金中生成了弥散分布于β-Li基体的含Mn相和Al_2Mn_3相,显著抑制了β-Li的长大。开发了具有超低密度(1.36 g/cm~3)、高伸长率(11%)的新型Mg-14Li-3Al-0.5Y-0.2Mn合金,其屈服强度和抗拉强度分别达到144 MPa和175.5 MPa。  相似文献   

13.
研究Zn和Gd元素含量及其质量比对铸态和挤压态Mg-8Li合金显微组织和力学性能的影响。挤压后,析出相破碎。β-Li中分散着粒径约100 nm的球形微粒。形成了由长条状α-Mg粗晶和再结晶β-Li细晶组成的双峰结构。挤压后合金的强度和塑性显著提高,且屈服强度和极限抗拉强度随Zn和Gd含量的增加而增加。Mg-8Li-8Zn-2Gd合金表现出最优的综合性能,其屈服强度、极限抗拉强度和伸长率分别为274 MPa、283 MPa和39.9%。挤压态合金主要强化机制为由β-Li的细晶强化和α-Mg的织构强化组成的双模态结构强化和析出相的弥散强化。  相似文献   

14.
基于α-Mg、α-Mg+β-Li和β-Li三种相结构,制备Mg-4Li-3(Al-Si)、Mg-8Li-3(Al-Si)和Mg-12Li-3(Al-Si)三种合金,用于研究Al-Si共晶体对其组织和力学性能的影响。在Mg-xLi (x=4%,8%和12%,质量分数)合金中添加Al-Si共晶体分别形成以下的Al-Li析出相:Al_3Li、AlLi和Li_3Al_2。此外,在这三种合金中还发现大量的Mg_2Si相颗粒。拉伸试验结果表明,Mg-4Li-3(Al-Si)合金的极限抗拉强度最高,为249 MPa,其伸长率最低,为6.3%。Mg-12Li-3(Al-Si)合金的伸长率最高,为26%,但极限抗拉强度最低,为173 MPa。这三种合金力学性能的差异归因于晶体结构的不同以及析出物类型、形态和分布的不同。  相似文献   

15.
采用锂盐熔剂保护熔铸了Mg-8Li-4Zn-xY合金铸锭,并通过正挤压制成1mm的薄板。通过光学显微镜、扫描电镜、XRD分析及合金硬度测试,探讨合金的组织与力学性能。结果表明:Mg-8Li-4Zn-xY合金基体为β-Li(bcc)和α-Mg(hcp)相,析出强化相颗粒和化合物为Mg2Zn11,Mg72.05Zn27.95,MgZn,Mg2Y,MgY及未知相。随Y含量的增加,铸态基体组织得到细化,析出相数量增加。1mm正挤压变形态薄板材基体组织大小、形貌和β-Li相内弥散析出的强化相颗粒数量随着Y含量的提高没有明显变化,但α-Mg相由β-Li相包裹着被拉长并得到一定程度的细化,呈平行于挤压方向的条带状。β-Li相在协调塑性变形的同时发生了动态再结晶,晶界均匀分布着强化相颗粒。无论是铸态还是挤压后1mm的Mg-8Li-4Zn-xY合金薄板,随着Y含量的增加合金得到不同程度的强化,硬度均得到不同程度的提高。  相似文献   

16.
铸态及挤压态Mg-11Li-3Al-xZr合金的组织及性能   总被引:1,自引:0,他引:1  
通过真空感应熔炼及挤压变形制备了铸态及挤压态的Mg-11Li-3Al-xZr(x=0、0.1)合金,采用OM、XRD、SEM、EDS观察并分析了合金的显微组织,测试了不同状态合金的力学性能。结果表明,Mg-11Li-3Al-xZr合金均含有β-Li、α-Mg、θ-MgLi_2Al、AlLi相,Mg-11Li-3Al-0.1Zr合金中还存在Al_3Zr相。铸态合金晶粒粗大,挤压变形过程中发生动态再结晶使晶粒细化。Zr的添加能明显细化晶粒,尤其在挤压后Mg-11Li-3Al-0.1Zr合金晶粒尺寸仅为Mg-11Li-3Al合金的1/4左右。铸态时两种合金力学性能相近,Mg-11Li-3Al-0.1Zr合金伸长率略低;挤压变形后两种合金伸长率较高,而且由于加工硬化和细晶强化作用,强度明显提高,Mg-11Li-3Al-0.1Zr合金的强度达到194 MPa,较铸态提高32.8%。  相似文献   

17.
采用传统铸造方法分别制备了Φ10 mm和Φ90 mm Mg-9Li-3Al-2.5Sr(LAJ932)合金锭。在挤压温度260℃,挤压比28条件下对Φ90 mm合金锭进行挤压。分别分析和报道了铸态和挤压态LAJ932镁合金的微观组织和力学性能。探讨了该合金在挤压过程中的组织演变规律。研究结果表明:铸态和挤压态LAJ932镁合金均包括α-Mg(hcp)相,β-Li(bcc)相和Al4Sr相。Φ10 mm铸锭的组织比Φ90 mm铸锭组织细小得多。挤压过程中α-Mg相发生连续动态再结晶,而β-Li相发生非连续动态再结晶。挤压过程中,在hcpα-Mg相中形成{10 1 0}10 1 0织构,而bccβ-Li相中则形成{110}101织构。挤压过程中,LAJ932镁合金的强度和塑性均得到改善。挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到235 MPa,屈服强度为221 MPa,延伸率为19.4%,合金展现出良好的力学性能。  相似文献   

18.
采用传统铸造方法分别制备了Φ10 mm和Φ90 mm Mg-9Li-3Al-2.5Sr(LAJ932)合金锭。在挤压温度260℃,挤压比28条件下对Φ90 mm合金锭进行挤压。分别分析和报道了铸态和挤压态LAJ932镁合金的微观组织和力学性能。探讨了该合金在挤压过程中的组织演变规律。研究结果表明:铸态和挤压态LAJ932镁合金均包括α-Mg(hcp)相,β-Li(bcc)相和Al4Sr相。Φ10 mm铸锭的组织比Φ90 mm铸锭组织细小得多。挤压过程中α-Mg相发生连续动态再结晶,而β-Li相发生非连续动态再结晶。挤压过程中,在hcpα-Mg相中形成{10 1 0}<10 1 0>织构,而bccβ-Li相中则形成{110}<101>织构。挤压过程中,LAJ932镁合金的强度和塑性均得到改善。挤压态Mg-9Li-3Al-2.5Sr(LAJ932)合金的抗拉强度达到235 MPa,屈服强度为221 MPa,延伸率为19.4%,合金展现出良好的力学性能。  相似文献   

19.
对La/Ce混合稀土的Mg-9Li-3Al-xRE(x=0,0.5,1,1.5,2,质量分数,%)合金,利用光学显微镜,带能谱(EDS)的扫描电子显微镜(SEM)和X射线衍射(XRD)研究了微观组织对其力学性能的影响。结果表明,在加入混合稀土的铸态合金中,形成了Al_4RE相,并且Mg_(17)Al_(12)相的含量和α-Mg相的体积分数均被减少。此外,细化了α-Mg相并提高了合金的力学性能。但是,随着La/Ce混合稀土含量的增加,Al_4RE相的尺寸增大,降低了合金的力学性能。在加入混合稀土的挤压态合金中,合金中Al_4RE相挤压破碎至1~3μm,分布于β-Li基体中和α/β相之间。Mg-9Li-3Al-1.5RE合金获得最好的力学性能,最大抗拉强度和延伸率分别为228.3 MPa和20.8%,同铸态Mg-9Li-3Al相比分别提高了88.6%和197.4%。  相似文献   

20.
《铸造技术》2016,(5):863-866
采用熔盐保护法熔铸了Mg-4Li、Mg-8Li及Mg-12Li合金,研究了Li含量变化对Mg-Li合金组织与性能的影响,并探讨了T5热处理对Mg-8Li组织、硬度及压缩性能的影响。结果表明,Mg-4Li合金组织为单相α-Mg固溶体,Mg-8Li合金组织为α+β双相固溶体,Mg-12Li合金组织为单相β-Li固溶体。三种合金中Mg-8Li合金硬度最高。随时效温度提高和保温时间延长,Mg-8Li合金的硬度增大,175℃×12 h时Mg-8Li合金既保持了较高的抗压强度,又有较好的塑性变形能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号