首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目前, 对316LN不锈钢在低速率应变下的热变形行为研究很少. 本文选用工业316LN不锈钢, 通过Gleeble-3800热模拟试验机进行了600-1 100 ℃温度下, 应变速率为3×10-3 s-1的热压缩试验, 得到了真应力-应变曲线. 通过分析真应力-应变曲线和试样的微观组织, 得到了如下结论: 1 000 ℃和稍高温度是适于低速率应变下316LN不锈钢加工的温度.  相似文献   

2.
在Gleeble-1500型热模拟试验机上通过高温压缩试验对316L不锈钢的变形抗力进行了系统的研究;根据试验得到的真应力-应变曲线,分析了变形温度和应变速率对316L不锈钢变形抗力的影响,并建立了高温变形抗力模型。结果表明:316L不锈钢在高温压缩过程中的热加工硬化倾向性较大,真应力-应变曲线上并没有出现应力峰值σ_p;1 050℃是该钢的特征变形温度,低于1 050℃时,流变应力受温度影响较大,随着温度的升高,流变应力的下降幅度较大;高于1 050℃时,温度的影响较小,流变应力下降幅度较缓;变形抗力的数学模型为σ=6.879exp(3 337.602/T)ε~(0.286)ε~(0.119),实际值和拟合值的对比证明此模型具有较好的线性拟合性和数据稳定性。  相似文献   

3.
《压力容器》2019,(9):1-6
在室温下,对核级管道不锈钢材料316LN试样进行了不同应变幅的低周疲劳试验研究,得到了316LN试样的循环应力-应变响应特征及低周疲劳寿命曲线。基于疲劳过程中、不同应变幅水平下,循环应力-应变迟滞回线的试验结果,分析了应力峰值、谷值和循环弹性模量随疲劳循环数的变化规律,研究了316LN试样的疲劳特性和疲劳寿命曲线特征,并与ASME疲劳设计曲线进行了对比。试验结果表明,试样初始循环表现出循环硬化,随后表现出循环软化直至失效;初始前10%疲劳寿命期内循环弹性模量缓慢下降,然后几乎保持不变,在达到80%~90%寿命后开始下降; Basquin和Manson-Coffin公式可以很好地描述0. 2%~0. 7%应变幅范围内的应变-疲劳寿命曲线。  相似文献   

4.
在304不锈钢成分基础上,添加了质量分数1.96%的硼元素,采用真空感应熔炼技术制备含硼不锈钢,对该钢进行单道次热压缩试验,研究了该钢在900~1150℃ 和应变速率0.1~10 s-1条件下的热变形行为;根据试验数据,基于Arrhenius方程并结合5次多项式拟合建立该钢的热变形本构模型,对加工硬化率-真应力曲线进行分析确定该钢发生动态再结晶的临界条件.结果表明:在试验参数下热压缩后,含硼不锈钢的流变应力-应变曲线为典型的动态再结晶型,软化机制以动态再结晶为主;随着变形温度的升高或应变速率的减小,试验钢的峰值应力及其对应的真应变降低;采用所建立的热变形本构方程计算得到的真应力-真应变曲线与试验测得的相吻合,平均相对误差绝对值为2.76%,说明该本构模型能够准确预测含硼不锈钢的热变形行为;变形温度较高、应变速率较小时,该钢较易发生动态再结晶.  相似文献   

5.
ASME Code Case 2596针对奥氏体不锈钢应变强化的容器,要求保压阶段最大环向应变速率小于0.1%/h。研究了相关测试方法,并针对某应变强化容器,研究了在最大变形截面采用应变片测量其应变率的方法,并与传统的卷尺测量方法进行了对比分析。研究表明,在保压阶段采用贴应变片技术对应变速率测量,在技术上是可行的。  相似文献   

6.
采用直流电压降(DCPD)方法测试了316LN不锈钢在室温和350℃的疲劳裂纹扩展速率,得到室温和350℃下该材料疲劳裂纹扩展门槛值ΔKth,并分析了试样断口形貌。结果表明:采用DCPD方法测得室温和350℃下ΔKth分别为11.9,8.1MPa·m1/2,与文献值相符,350℃下的疲劳裂纹扩展速率比室温下的要高2~20倍;在裂纹亚临界扩展区,疲劳裂纹扩展速率与应力强度因子范围服从Paris公式,其参数n与温度无关,参数D与温度成线性正比关系;试样疲劳破坏形式为穿晶断裂。  相似文献   

7.
谭伟 《机械强度》2004,26(Z1):42-45
采用应变电极方法研究在阴极极化条件下316L奥氏体不锈钢在3.5%NaCl水溶液中的低周循环应变电极行为及其损伤演变.研究表明,通过对瞬态应变电流Ⅰst演变进行合理的解析,可以实时地获得316L应变电极的损伤演化信息.当试样表面未出现裂纹时,只存在一个应变电流峰-Ⅰst,pl,对应于最大拉伸位移幅△Lmax,最大压缩位移幅△Lmin与-min|Ⅰst|对应.当试样表面出现细观裂纹或裂纹扩展时,△Lmin与-min|Ⅰst|不对应.  相似文献   

8.
针对核用316LN不锈钢锻件试环,采用OM,SEM,EDS等设备研究了δ铁素体对其冲击韧性的影响。结果表明,试环固溶处理的保温时间较短,导致锻件芯部δ铁素体组织无法全部分解而残留于奥氏体基体中;冲击过程中,在剪应力的作用下裂纹优先在δ铁素体与奥氏体界面开裂,发生脆性断裂,进而显著降低其冲击韧性。  相似文献   

9.
采用慢应变速率拉伸法以及电化学方法,通过与316L奥氏体不锈钢进行对比,研究了316LN奥氏体不锈钢在不同温度(25,50℃)和不同腐蚀介质(质量分数为3%的NaCl溶液、质量分数为6%的FeCl3溶液)中的应力腐蚀开裂和电化学腐蚀行为。结果表明:316LN钢在含Cl-溶液中的应力腐蚀敏感性低于316L钢;316LN钢在NaCl溶液中发生钝化-击穿行为,而在FeCl3溶液中则呈现活性溶解特征,阻抗谱均为单一容抗弧特征,且温度越高,316LN钢的自腐蚀电流越大,容抗弧半径和电荷转移电阻越小。316LN钢的耐腐蚀性能优于316L钢。  相似文献   

10.
304不锈钢属于非稳态奥氏体不锈钢,在应变强化过程中,应变温度、应变速率、应变量等均可改变应变诱发马氏体的转变量和转变速率及内部组织滑移线、形变孪晶、位错和层错密度的转变量和转变速率,从而表现出不同的应变硬化行为。针对304奥氏体不锈钢,主要从应变速率敏感指数、应变硬化指数两方面,研究了应变速率对其室温应变硬化行为的影响。  相似文献   

11.
甘磊  吴昊  仲政 《机械强度》2020,42(2):313-318
针对316L不锈钢开展一系列多轴低周疲劳试验,该材料显现出了较为显著的非比例附加强化特性;基于四种应变法模型进行疲劳寿命预测,结果显示:ASME等效应变模型、Itoh模型均无法有效反映非比例附加强化对寿命的影响,前者预测结果偏于危险,后者预测结果趋于保守,而与临界平面法结合的Fatemi-Socie模型、Susmel模型预测结果则较好。为便于应用,针对ASME等效应变模型的不足,对等效应变中的塑性项进行修正,使其可更有效的反映非比例加载路径对寿命的影响,发展一种优于一般修正方法的实用方法,采用包括316L不锈钢在内的六种材料的多轴疲劳试验数据对其进行了验证。  相似文献   

12.
对奥氏体不锈钢321 (0.4%Ti)热变形过程中的宏观完整性及微观均匀性进行研究。通过Gleeble压缩及100 t压机锻造进行物理模拟,实验结果显示, 321在900~1 250℃区间的变形中,氮化层及δ铁素体是锻造开裂的诱因;在1 150~1 250℃区间塑性流变较充分,动态再结晶状态的区域性分布与流变程度相对应; 1 000~1 100℃区间的固溶处理,静态再结晶晶粒长大速率适中,适当的保温时间可实现晶粒度控制。  相似文献   

13.
针对316H不锈钢,通过开展一系列高温蠕变试验,探讨了保载应力和保载前加载速率对材料蠕变行为的影响。结果表明,保载应力对材料蠕变行为影响较大,在进行高温结构蠕变损伤估算时,蠕变应变速率和蠕变断裂延性的选取均要考虑保载应力的影响;保载前的加载速率也对材料蠕变行为产生一定影响,尤其是加载速率较低时。因此,在进行高温结构蠕变损伤估算时,需考虑较低加载速率的影响。  相似文献   

14.
在550℃下对核电用316L不锈钢进行应变控制(应变幅在0.3%~1.2%)、应力控制(应力幅在230~300 MPa)低周疲劳试验和应变控制蠕变疲劳试验(3种波形,拉伸保载60,180,600 s,压缩保载60,180 s,拉压对称保载180 s),通过疲劳寿命、循环响应特征和应力-应变滞回曲线分析了不同控制模式下试验钢的疲劳变形行为;构建疲劳寿命预测模型,评估了Manson-Coffin-Basquin模型、SWT模型和能量法模型对不同控制模式下试验钢疲劳寿命的预测能力。结果表明:在不同控制模式的疲劳循环载荷下,316L不锈钢的循环应力响应均包括循环硬化、循环软化和失效断裂3个阶段;在低周疲劳试验中,疲劳寿命随应变幅或应力幅的增大而缩短;在蠕变疲劳试验中,疲劳寿命随拉伸保载时间的延长而缩短,随压缩保载时间的延长而增大,这与动态应变时效和蠕变对疲劳损伤的综合作用有关;在相同保载时间下,压缩保载下的疲劳寿命比拉伸保载下的短,这与不同加载方向引起的氧化层致裂机制有关。能量法模型对316L不锈钢在不同控制模式下的疲劳寿命预测精度最高,预测精度在1.5倍误差带以内,Manson-Coffin...  相似文献   

15.
通过高温拉伸试验研究了应变速率对Cr15Mn9Cu2NiN和Cr17Mn6Ni4Cu2N两种铸态奥氏体不锈钢热塑性的影响。结果表明:Cr15Mn9Cu2NiN钢的显微组织为单一奥氏体,而Cr17Mn6Ni4Cu2N钢中有残留δ铁素体分布在奥氏体晶界和晶粒内部;将应变速率由0.1s-1升高至10s-1后,变形时奥氏体晶界处增加的应力集中的作用与减少晶界滑移的作用相抵消,因此对Cr15Mn9Cu2NiN钢的热塑性无明显影响;但Cr17Mn6Ni4Cu2N钢的显微组织中存在较多的奥氏体/铁素体相界,这些相界在高应变速率时会变成位错源迅速产生大量的位错,从而提高奥氏体和铁素体强度,降低铁素体处的应力集中作用,使其断面收缩率提高10%以上。  相似文献   

16.
17.
采用Gleeble-3500型热力模拟试验机对新型CHDG-A06奥氏体不锈钢进行单道次压缩试验,研究了其在变形温度为950~1 100℃、应变速率为0.01~1s~(-1)条件下的热变形行为,并对变形后的显微组织进行了观察;根据试验钢的应力-应变曲线,通过线性回归建立了它的高温热变形本构模型。结果表明:在热变形过程中,变形温度和应变速率对流变应力的影响显著,流变应力随着变形温度的升高或应变速率的降低而降低;动态再结晶易发生在较低应变速率(≤0.1s~(-1))或较高变形温度(≥1 050℃)下;利用峰值应力求得该钢的双曲线正弦本构方程,并得到其热变形激活能为453.674 4kJ·mol~(-1)。  相似文献   

18.
通过使用Gleeble-1500热模拟试验机,就不同变形温度和变形速率对SUS316L不锈钢流变应力及金相组织的影响进行了分析,并得到了相关规律。  相似文献   

19.
采用INSTRON准静态压缩实验机和分离式霍普金森压杆装置对铸造固溶态AM80镁合金不同应变速率下的压缩变形行为进行了研究,应变速率分别为0.0001s-1、800s-1、1050s-1、1600s-1、1850s-1和2100s-1。结果表明:当应变速率ε˙≤1850s-1时,实验用AM80镁合金的流变应力随应变速率的增大而增大,表现出明显的正应变速率敏感性;当应变速率增至2100s-1时,由于局部温升效应,合金产生了明显的动态软化,导致流变应力反而略有减小。采用Johnson-Cook材料模型对实验用AM80镁合金在不同应变速率下的变形行为进行描述,并取材料应变速率强化参数为应变速率的函数。对比结果表明,所建立的本构方程与实验结果基本吻合。此外,由于力学本构忽略了由形变引起的温升软化,基于ABAQUS的仿真结果在较低应变速率(800s-1)和高应变速率(1850s-1)的中低应变下与实验结果吻合得较好;而在高应变速率(1850s-1)的较高应变条件下,仿真结果与实验结果差异较大。  相似文献   

20.
采用分离式霍普金森压杆(SHPB)装置在1 000~8 000s-1应变速率范围内分别对TC4-DT和TC21两种损伤容限型钛合金进行了动态压缩试验,并利用扫描电子显微镜和光学显微镜观察了其断口形貌和显微组织。结果表明:两种钛合金都表现出一定的应变速率增强、增塑效应,在相同应变速率下TC21钛合金的流变应力要比TC4-DT钛合金的大;两种钛合金均表现为剪切破坏,断口上均交替分布着韧窝区和平滑区,与TC21钛合金相比,在相同的应变速率下TC4-DT钛合金的韧窝数量更多,延伸得更长;TC21钛合金中没有明显的绝热剪切带,而TC4-DT钛合金中有明显的绝热剪切带,其宽度随应变速率的增加而增大,同时沿剪切带方向还伴随着裂纹的萌生、扩展和聚合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号