首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
论文采用光学显微镜、X射线衍射仪、扫描电子显微镜及显微硬度测试、室温和高温拉伸性能测试、蠕变性能测试研究了Ce和不同的Zn /Cu质量比对Mg-Zn-Cu显微组织和室温及高温力学性能的变化规律、高温变形性能、强化机制和抗蠕变性能的影响。研究结果表明,室温下挤压态Mg-8Zn-8Cu-Ce的拉伸强度和屈服强度分别为320 MPa和291 MPa,在423K温度下,拉伸强度仍高于220MPa。合金具有优良的蠕变性能,稳态蠕变速率为1.21×10-8 s-1,蠕变量仅为0.562%。在相同的变形温度下,铸造Mg-7Zn-3Cu-Ce的真实应力随着应变速率的增大而增大,表明合金是应变速率敏感材料。相同的应变速率下,合金的真实应力随着温度的升高而减小,但没有明显的动态再结晶和软化现象。  相似文献   

2.
研究了7种亚快速凝固Mg-Zn-Sn-Al-Ca合金的组织、拉伸性能和抗蠕变性能。对于Mg-xZn-ySn-2Al-0.2Ca(x+y=9,x/y为2,1和0.5)合金,锌锡比为1时室温抗拉强度和屈服强度最高:150℃屈服强度随着锌锡比的增加而提高,而200℃相反。这可能与低锌锡比合金中Mg_2Sn较多、含Zn化合物较少且Mg_2Sn具有高温强化作用有关。对于Mg-4.5Zn-4.5Sn-2Al-zCa(z=0,0.2,0.4,0.6)合金,室温和200℃抗拉强度和屈服强度随着Ca含量的增加先提高后下降,峰值分别出现在0.2%Ca和0.4%Ca。200℃/50MPa压缩蠕变时,合金初始应变量和稳态蠕变速率随着Ca含量的增加而降低。少量Ca可以提高Mg-4.5Zn-4.5Sn-2Al合金的室温和高温强度并改善抗蠕变性能,但降低高温塑性。此外,也影响拉伸断裂模式。随着Ca含量的增加,合金室温断裂由解理断裂转变为准解理断裂,200℃断裂由韧性断裂转变为准解理断裂。  相似文献   

3.
采用硬度测试、室温拉伸性能测试、光学显微镜、扫描电镜及透射电镜等方法研究了锌镁元素含量对Al-3Zn-4.5Mg-1Cu、Al-4Zn-3.5Mg-1Cu和Al-4.5Zn-3.5Mg-1Cu 3种高强铝合金挤压棒材的显微组织、时效硬化行为和力学性能的影响。结果表明,Al-4.5Zn-3.5Mg-1Cu合金的时效硬化效果最显著,经120℃×24 h时效后维氏硬度达183 HV3,抗拉强度达617 MPa,屈服强度为590 MPa,伸长率为10.2%。Zn元素含量或Zn/Mg比值升高增加了时效时沉淀强化相的密度,减小了其尺寸,从而提高了强化效果。  相似文献   

4.
针对生物医用Mg-3Zn-0.2Ca的显微组织、力学性能以及生物腐蚀行为,采用X射线衍射(XRD)、光学显微镜(OM)、扫描电镜(SEM)、拉伸实验机、电化学以及浸泡测试方法进行了研究。XRD结果表明Mg-3Zn-0.2Ca合金中的第二相主要为Mg_7Zn_3,Mg_2Zn_3,Mg_4Zn_7等金属间化合物相。相比于铸态,经过56:1挤压比变形后的Mg-3Zn-0.2Ca合金晶粒明显细化,平均晶粒尺寸从119.1μm降到2.5μm,降低了47.6倍。挤压态Mg-3Zn-0.2Ca合金的屈服强度(0.2%TYS)、抗拉强度以及延伸率分别为205,336 MPa和17.85%,电化学以及浸泡测试表明挤压态合金的耐蚀性明显优于铸态Mg-3Zn-0.2Ca合金,其主要归因于晶粒细化。新设计的生物医用Mg-3Zn-0.2Ca合金呈现出了良好的综合力学性能以及生物耐蚀性。  相似文献   

5.
以Mg-4Zn-0.5Ca合金为研究对象,研究了Cu对Mg-4Zn-0.5Ca合金组织及力学性能的影响。结果表明,Cu可以通过与Zn原子结合形成Mg-Zn-Cu三元相在α-Mg基体边界富集,阻碍基体长大,使Mg-4Zn-0.5Ca合金铸态组织得到细化,合金主要由α-Mg,Ca2Mg6Zn3,Mg Zn Cu相组成。Cu元素可以提高Mg-4Zn-0.5Ca合金的硬度及抗拉强度,当Cu含量为1%时,铸态Mg-4Zn-0.5Ca-1Cu合金的抗拉强度和屈服强度分别为149 MPa、102 MPa,相对于基本合金提高了14.6%和29.1%,合金硬度提高18.8%至63 HV。过量的Cu会使合金中的析出相呈连续的网状分布在晶界上,导致力学性能的下降。  相似文献   

6.
研究铸态、挤压态和挤压峰值态的Mg-6Zn-xEr合金的微观组织和力学性能。结果表明,Er的加入可显著改善Mg-6Zn合金的力学性能,经过峰值时效后合金的力学性能得到进一步提高;挤压态Mg-6Zn-0.5Er合金经过峰值时效处理后具有最佳的拉伸强度。该合金的抗拉强度和屈服强度分别为329MPa和183MPa,伸长率为12%。这表明添加0.5%Er可显著提高Mg-6Zn合金的时效硬化行为。挤压峰值态Mg-6Zn-0.5Er合金较好的力学性能归因于结构的细化和β1相的析出强化。  相似文献   

7.
通过在室温和-20℃下进行拉伸试验,主要研究了时效时间对Al-8Zn-2. 5Mg-1. 5Cu(-0. 15Y)合金室温和低温拉伸性能的影响。试验结果表明,添加0. 15%的元素Y可以有效提高固溶+时效(T6)态Al-8Zn-2. 5Mg-1. 5Cu合金室温及低温下的抗拉强度和屈服强度。在5~30 h时效时间内,随时效时间的延长,T6态Al-8Zn-2. 5Mg-1. 5Cu(-0. 15Y)合金的抗拉强度屈服强度先上升后下降,断后伸长率则呈先下降后上升的趋势;与室温下的拉伸性能相比,T6态Al-8Zn-2. 5Mg-1. 5Cu(-0. 15Y)合金在-20℃的抗拉强度和屈服强度较高,而断后伸长率略低。室温拉伸时,T6态Al-8Zn-2. 5Mg-1. 5Cu合金呈现典型的韧性断裂特征,而T6态Al-8Zn-2. 5Mg-1. 5Cu-0. 15Y则呈现韧脆混合断裂特征;当拉伸试验温度为-20℃时,T6态Al-8Zn-2. 5Mg-1. 5Cu(-0. 15Y)合金的断口上均可观察到沿晶断裂特征,表现为韧脆混合断裂。  相似文献   

8.
生物医用Mg-3Zn-0.2Ca合金的显微组织,力学性能,腐蚀行为通过光学显微镜,扫描电镜,力学测试以及模拟体液浸泡手段进行了研究。X射线衍射结果表明该合金的主要第二相为Mg7Zn3, Mg2Zn3, 和Mg4Zn7的金属间化合物相。经过56:1挤压比后的挤压态Mg-3Zn-0.2Ca合金的晶粒尺寸平均为2.5um,相比铸态的119.1um下降了47.6倍。屈服强度,抗拉强度以及延伸率分别为205MPa, 336MPa 和17.85%。挤压态合金的耐蚀性也明显优于铸态合金,其原因主要为晶粒细化。本文设计的新型生物医用Mg-3Zn-0.2Ca合金呈现出良好的综合力学性能以及耐蚀性。  相似文献   

9.
在Mg-6Zn合金中添加0.6%、1%和2%Ce(质量分数),联合往复挤压和低温正挤压细化Mg-Zn-Ce合金组织,利用X射线衍射、光学显微镜、扫描电镜和透射电镜分析合金中相组成和组织演化,测试合金的室温力学性能。结果表明:Mg-6Zn-0.6Ce合金中主要化合物为Mg_4Zn_7相,Mg-6Zn-1Ce和Mg-6Zn-2Ce合金中主要化合物为T-(MgZn)_(12)Ce相。往复挤压合金经动态再结晶而细化,晶粒尺寸随Ce添加量增加而变小,分别为20.6μm、16.5μm和9.1μm。低温正挤压时,合金再次发生动态再结晶而再次细化,晶粒尺寸分别为2.0μm、8.6μm和1.9μm。Mg-6Zn-0.6Ce合金力学性能最佳,屈服强度、抗拉强度和伸长率分别为266.4 MPa、312.4 MPa和12.8%。合金的优良性能是由细晶强化、颗粒强化和固溶强化的共同作用造成的。  相似文献   

10.
制备了Al-2Mg-0.4Sc、Al-5Mg-0.4Sc、Al-5Mg-2Zn-0.4Sc和Al-5Zn-2Mg-0.4Sc等4种合金并在350℃进行热挤压,通过光学显微镜(OM),X射线衍射(XRD),扫描电子显微镜(SEM)、室温拉伸测试,研究了Zn/Mg比对于Al-Zn-Mg-Sc合金组织与力学性能的影响。结果表明,Zn/Mg比的提高对于铸态晶粒具有细化作用,挤压后发生动态再结晶,晶粒尺寸显著减小,但挤压态晶粒尺寸并未随Zn/Mg比的提高而减小。另一方面,Zn/Mg比的提高使Mg32(Al,Zn)49第二相数量增加,且呈现更明显的网状结构。挤压态Al-Zn-Mg-Sc合金屈服强度随Zn/Mg比的提高而提升,主要由于大量Al3Sc粒子与碎化的第二相呈网状分布于晶界,使第二相强化起到主导作用。  相似文献   

11.
研究了7种亚快速凝固Mg-Zn-Sn-Al-Ca合金的组织、拉伸性能和抗蠕变性能。对于Mg-xZn-ySn-2Al-0.2Ca(x+y=9,x/y为2,1和0.5)合金,锌锡比为1时室温抗拉强度和屈服强度最高:150℃屈服强度随着锌锡比的增加而提高,而200℃相反。这可能与低锌锡比合金中Mg2Sn较多、含Zn化合物较少且Mg2Sn具有高温强化作用有关。对于Mg-4.5Zn-4.5Sn-2Al-zCa(z=0,0.2,0.4,0.6)合金,室温和200℃抗拉强度和屈服强度随着Ca含量的增加先提高后下降,峰值分别出现在0.2%Ca和0.4%Ca。200℃/50MPa压缩蠕变时,合金初始应变量和稳态蠕变速率随着Ca含量的增加而降低。少量Ca可以提高Mg-4.5Zn-4.5Sn-2Al合金的室温和高温强度并改善抗蠕变性能,但降低高温塑性。此外,也影响拉伸断裂模式。随着Ca含量的增加,合金室温断裂由解理断裂转变为准解理断裂,200℃断裂由韧性断裂转变为准解理断裂。  相似文献   

12.
以Mg-12Zn-4Al-0.3Mn(质量分数,%)为母合金,制备了6种合金.实验观察证实,Mg-12Zn-4Al-0.3Mn合金的铸态组织由α-Mg基体和沿晶界分布的准晶Q相组成.在母合金中加入少量的Sr后,亚稳准晶相转变为Mg32(Al,Zn)49平衡相以及Mg51Zn20共晶相.在母合金中复合加入Sr与Ca后,铸态组织出现了Al2Mg5Zn2共晶相.随着Sr含量的增加,合金室温和高温下的力学拉伸强度提高,高温蠕变性能下降;Sr与Ca的复合加入使合金抗拉强度和塑性下降,但高温屈服强度提高.在175℃/70 MPa条件下,Mg-12Zn-4Al-0.2Sr-0.4Ca-0.3Mn合金表现出良好的高温抗蠕变性能.  相似文献   

13.
研究Zn和Gd元素含量及其质量比对铸态和挤压态Mg-8Li合金显微组织和力学性能的影响。挤压后,析出相破碎。β-Li中分散着粒径约100 nm的球形微粒。形成了由长条状α-Mg粗晶和再结晶β-Li细晶组成的双峰结构。挤压后合金的强度和塑性显著提高,且屈服强度和极限抗拉强度随Zn和Gd含量的增加而增加。Mg-8Li-8Zn-2Gd合金表现出最优的综合性能,其屈服强度、极限抗拉强度和伸长率分别为274 MPa、283 MPa和39.9%。挤压态合金主要强化机制为由β-Li的细晶强化和α-Mg的织构强化组成的双模态结构强化和析出相的弥散强化。  相似文献   

14.
Ca对Mg-6Zn合金组织与力学性能的影响   总被引:1,自引:0,他引:1  
通过光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)研究了Mg-6Zn-xCa(x=0~1.35)合金的铸态和挤压态组织与相组成,测试了其室温力学性能。结果表明,随着Ca含量的增加,铸态组织逐渐细化,生成的Mg6Zn3Ca2相逐渐增多,而MgZn2相逐渐减少直至完全消失,第二相趋于连续网状分布于晶界处;挤压态组织明显细化,且平均晶粒尺寸从Mg-6Zn合金的15μm逐渐减至Mg-6Zn-0.47Ca合金的10μm。随着Ca含量的增加,铸态抗拉强度、屈服强度和伸长率先从Mg-6Zn合金的154MPa、67MPa、6.5%分别提高至Mg-6Zn-0.085Ca合金的230MPa、84MPa、14%,然后逐渐降低。挤压态力学性能明显提高,加入少量Ca(0.085%)后,抗拉强度和屈服强度稍降低,伸长率提高,而加入较多量Ca(0.47%)后,力学性能明显恶化。  相似文献   

15.
挤压铸造Al-6.8Zn-2.6Mg-2.3Cu的组织和性能   总被引:1,自引:0,他引:1  
采用金相、扫描电镜和DSC热分析仪研究了挤压铸造Al-6.8Zn-2.6Mg-2.3Cu合金的显微组织、铸造性能和力学性能,并与Al-5.5Si-4.0Cu合金进行了对比研究。结果表明,熔体温度为720℃和740℃时,Al-6.8Zn-2.6Mg-2.3Cu合金的流动性能比Al-5.5Si-4.0Cu合金分别提高了10.9%和2.9%;挤压压力从0.1MPa增加到75.0MPa时,铸态Al-5.5Si-4.0Cu合金的抗拉强度和伸长率都略高于Al-6.8Zn-2.6Mg-2.3Cu合金,但经过T6热处理后,Al-6.8Zn-2.6Mg-2.3Cu合金的抗拉强度增幅比Al-5.5Si-4.0Cu合金高100MPa以上,这主要是因为Al-6.8Zn-2.6Mg-2.3Cu合金具有更强的时效强化效果。  相似文献   

16.
通过常规铸造制备了3种成分的低合金化Mg-Zn-Y合金(Mg-0.6Zn-0.1Y、Mg-1.3Zn-0.1Y、Mg-2.0Zn-0.1Y,质量分数,%),并对其进行低温慢速挤压(140℃,0.1mm/s)。结果表明:随Zn含量的增加,挤压前合金的晶粒尺寸逐渐减小。挤压后合金晶粒显著细化,形成弥散的纳米析出相,同时随Zn含量的增加合金的再结晶程度与纳米析出相的数量均增加,基面织构强度则无显著变化。挤压后合金的力学性能得到大幅提升,其中Mg-2.0Zn-0.1Y合金的屈服强度、抗拉强度和延伸率分别达到406.4 MPa、424.53 MPa、12.2%。随Zn含量增加,Mg-Zn-Y合金的延伸率显著增加,其断口形貌由解理面转变为细小的韧窝,断裂方式由解理断裂转变为韧性断裂。  相似文献   

17.
通过真空熔炼方法制备铸态Mg-8Li-xZn-yGd(x=1,2,3,4;y=1,2;wt%)合金,并对合金的显微组织和力学性能进行研究。结果表明:随着Zn含量的增加,W相(Mg_3Zn_3Gd_2)的体积分数增加,而Mg_3Gd相的体积分数减少。Mg-8Li-xZn-lGd合金强度的提高是因为随着锌含量的增加,细小片状W相的第二相强化以及Zn的固溶强化。随着钆含量的增加,Mg-8Li-4Zn-yGd合金的强度降低,这是因为形成粗化和不连续网状的W相。Mg-8Li-4Zn-1G合金表现出最优的综合性能,屈服强度为154.7MPa、抗拉强度为197.0MPa、伸长率为12.4%。另外,对合金的时效行为进行研究。  相似文献   

18.
本文通过光学显微镜、拉伸试验机对比研究了Ce、Cu元素对Mg-1.5Zn-0.2Mn合金组织和力学性能的影响。研究结果表明,Cu、Ce元素对铸态Mg-1.5Zn-0.2Mn合金晶粒细化效果并不明显,但经350℃热变形后,能显著细化挤压态Mg-1.5Zn-0.2Mn合金的晶粒组织,其中Ce细化晶粒的效果更加明显,而且Ce能够抑制合金的动态再结晶。此外,Cu、Ce元素的添加均能提高Mg-1.5Zn-0.2Mn合金沿ED和TD方向的屈服强度和抗拉强度,其中Ce元素提高幅度更大,Mg-1.5Zn-0.2Mn-0.2Ce合金ED、TD方向屈服强度分别为185 MPa和162 MPa。与此同时,这两种元素还可以改善Mg-1.5Zn-0.2Mn合金板材强度的各向异性,其中Cu元素的改善效果更明显。  相似文献   

19.
采用重力铸造法制备Mg-8Al-1Zn-1Si-0.6Sb合金,研究了固溶处理对该合金组织及力学性能的影响。结果表明,铸态合金主要由α-Mg、β-Mg_(17)Al_(12)、Mg_2Si、Mg Zn和Mg_3Sb_2相组成。对合金进行430℃×(8~32) h固溶处理,随保温的时间延长,Mg Zn相和β-Mg_(17)Al_(12)相固溶于α-Mg基体;粗大汉字状Mg_2Si相发生球状化;与此同时,合金的室温及高温(150℃)抗拉强度、屈服强度和伸长率逐步提高,硬度逐渐下降。铸态与固溶处理态合金的拉伸断裂形式均呈准解理脆性断裂。  相似文献   

20.
本文主要通过OM、SEM、EDS和XRD等研究了铸态及挤压态Mg-2Zn-1Mn-xY (Y=0,0.8,2.2,wt.%) 镁合金显微组织和力学性能。由实验结果可知,稀土Y的添加,不仅可以细化铸态及挤压态合金晶粒,还可以弱化挤压态合金的基面织构强度,从而同时提高合金的强度以及韧性。本文中最优化合金挤压态Mg-2Zn-1Mn-xY合金具有良好的力学性能,与原始Mg-2Zn-1Mn合金相比,屈服强度从164MPa提高到204MPa、抗拉强度从237MPa提高到298MPa以及延伸率从12%增加到18%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号