首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文通过真空熔炼炉在氩气保护下制备了Mg-9Li-3Al-xSi(x=0,0.1,0.5,1.0 wt%)合金。实验使用光学显微镜(OM),扫描电子显微镜(SEM),力学性能测试和X射线衍射(XRD)研究合金的微观组织和力学性能。实验结果表明:铸态Mg-9Li-3Al合金组织中主要由α-Mg、β-Li、Mg17Al12相组成。加入Si后,合金中出现了新相Mg2Si,晶粒得到了明显细化;当合金中的Si含量过高时,α-Mg相粗化,且会在相界处出现块状和汉字状的Mg2Si相。合金的强度随着Si含量的增加呈现先增加后降低的趋势,合金的延伸率随着Si含量的增加呈现逐渐降低的趋势。当合金中Si含量为0.1%时,抗拉强度达到最大值182.5MPa,延伸率为12.1%,相比未添加Si的Mg-9Li-3Al合金,抗拉强度提高了59.6%。  相似文献   

2.
对La/Ce混合稀土的Mg-9Li-3Al-xRE(x=0,0.5,1,1.5,2,质量分数,%)合金,利用光学显微镜,带能谱(EDS)的扫描电子显微镜(SEM)和X射线衍射(XRD)研究了微观组织对其力学性能的影响。结果表明,在加入混合稀土的铸态合金中,形成了Al_4RE相,并且Mg_(17)Al_(12)相的含量和α-Mg相的体积分数均被减少。此外,细化了α-Mg相并提高了合金的力学性能。但是,随着La/Ce混合稀土含量的增加,Al_4RE相的尺寸增大,降低了合金的力学性能。在加入混合稀土的挤压态合金中,合金中Al_4RE相挤压破碎至1~3μm,分布于β-Li基体中和α/β相之间。Mg-9Li-3Al-1.5RE合金获得最好的力学性能,最大抗拉强度和延伸率分别为228.3 MPa和20.8%,同铸态Mg-9Li-3Al相比分别提高了88.6%和197.4%。  相似文献   

3.
采用普通重力铸造法制备了Mg-9Li-x Ca-0.5(Al-12.6Si)(x=0,0.25,0.5,1.0wt%)合金,研究了不同Ca含量对铸态Mg-9Li-0.5(Al-12.6Si)合金微观组织演变和力学性能的影响,分析了组织转变与力学行为之间的关系。结果表明,随着Ca含量的增加,Mg-9Li-0.5(Al-12.6Si)合金中的α-Mg相被细化,呈长条状,最后又长大;合金中存在一定数量的长径比高达5.06的长条状α-Mg相及颗粒相均匀弥散分布于β-Li基体和晶界上,其成分主要为Mg_2Ca、Mg_2Si。当含0.5wt%Ca时,合金的抗拉强度为134 MPa,伸长率为30.6%。  相似文献   

4.
基于α-Mg、α-Mg+β-Li和β-Li三种相结构,制备Mg-4Li-3(Al-Si)、Mg-8Li-3(Al-Si)和Mg-12Li-3(Al-Si)三种合金,用于研究Al-Si共晶体对其组织和力学性能的影响。在Mg-xLi (x=4%,8%和12%,质量分数)合金中添加Al-Si共晶体分别形成以下的Al-Li析出相:Al_3Li、AlLi和Li_3Al_2。此外,在这三种合金中还发现大量的Mg_2Si相颗粒。拉伸试验结果表明,Mg-4Li-3(Al-Si)合金的极限抗拉强度最高,为249 MPa,其伸长率最低,为6.3%。Mg-12Li-3(Al-Si)合金的伸长率最高,为26%,但极限抗拉强度最低,为173 MPa。这三种合金力学性能的差异归因于晶体结构的不同以及析出物类型、形态和分布的不同。  相似文献   

5.
《铸造技术》2017,(10):2348-2350
以AZ91D为基体,研究了添加Be和Y对其压铸组织的影响。结果表明,加入Be,AZ91D合金组织中析出了Mg_(3.1)Al_(0.9)、Mg_2A_(l3)和Mg_(17)Al_(12)相。Be含量增加,AZ91D合金α-Mg相枝晶得到细化,有球化趋势。Y也可显著细化α-Mg基体,并细化β-Mg_(17)Al_(12)相;随Y含量的增加,压铸AZ9D合金组织得到逐步细化,相组成为α-Mg、Mg_(0.97)Zn_(0.03)和Mg_(3.1)Al_(0.9)。  相似文献   

6.
采用LSCM、XRD、SEM、TEM及其附带的EDS,结合相图分析研究了半连续铸造(DC铸造)Al-12Si-0.65Mg-(0~2.27)Mn(质量分数,%)合金铸锭中的第二相及其形成过程。结果表明,Al-12Si-0.65Mg合金铸锭中存在α-Al、共晶Si、Mg_2Si和p相(Al_8Mg_3FeSi_6),它们分别是在567℃通过L+Al_5Fe Si→α-Al+Si+Al_8Mg_3FeSi_6、555℃通过L→α-Al+Si+Mg_2Si及550~554℃通过L→α-Al+Si+Mg_2Si+Al_8Mg_3FeSi_6反应形成的。当合金中添加Mn时,α-Al枝晶明显细化,同时合金铸锭中出现α-Al(FeMn)Si相;当Mn含量(质量分数,下同)从0.10%增加至2.27%时,α-Al枝晶形貌、尺寸及数量无明显变化,α-Al(FeMn)Si数量增多而尺寸不变;当Mn含量达到1.07%时,合金在647℃通过L+Al_6Mn→α-Al+Al_9Mn_4Si_3反应生成尺寸约80 mm的Al_9Mn_4Si_3,其中溶解了少量Fe形成Al_9(FeMn)_4Si_3,随Mn含量增加其数量增多而尺寸不变;经550℃均匀化处理后,合金中的Mg_2Si相溶入基体消失,共晶Si、p相和α-Al(FeMn)Si相球化成颗粒状,Al_9(FeMn)_4Si_3相形貌、尺寸及数量几乎不变,Al-12Si-0.65Mg-(0.10~2.27)Mn合金基体中析出尺寸约几百纳米的Al_9(MnFe)_2Si_3弥散相粒子,其数量随Mn含量增加而增多。  相似文献   

7.
《铸造技术》2016,(8):1562-1566
采用重力铸造法制备Mg-8Al-8Zn-xSi(x=1,2,4,质量分数)镁合金。研究了不同Si含量对合金显微组织及室温和高温(150℃)力学性能的影响。结果表明:合金主要由α-Mg基体、β-Mg_(17)Al_(12)、Mg_2Si和MgZn相组成。随着Si含量的增加,Mg_2Si颗粒由汉字状逐渐转变为粗大的骨骼状。Si含量从1%增加到2%和4%时,Mg_2Si颗粒的平均尺寸由25μm分别增大到30μm和150μm;合金的硬度逐渐提高;其室温及高温抗拉强度、屈服强度和伸长率均呈现先提高后下降的趋势;室温及高温拉伸断裂形式为准解理脆性断裂。  相似文献   

8.
在Mg-9Al合金中添加3%~9%的Si,采用高频感应加热熔炼、随炉冷却凝固,获得了Mg_2Si含量高达10%~30%的Mg-9Al基复合材料。利用光学显微镜、扫描电镜、能谱分析、X射线衍射分析及差热分析(DTA),研究了复合材料的凝固组织与形成机理。结果表明,复合材料都是由Mg_2Si、Mg17Al12和α-Mg等3种相组成,而Mg_2Si和Mg17Al12含量随Si含量增加而增加;复合材料凝固过程中,首先析出初生Mg_2Si,之后形成Mg+Mg_2Si共晶组织,共晶Mg_2Si依附初生Mg_2Si相生长而不形成汉字状Mg_2Si相;随着Si含量增加,Mg-9Al基体中Al含量逐渐增加,凝固行为也随之变化。  相似文献   

9.
本文研究了La/Ce混合稀土对Mg-9Li-3Al-xRE(x=0、0.5、1、1.5、2 w.%)合金微观组织和力学性能的影响。在加入混合稀土的铸态合金中,形成了Al4RE相,并且Mg17Al12相的含量和α-Mg相的体积分数均被减少。此外,细化了α-Mg相并提高了合金的力学性能。但是,随着La/Ce混合稀土含量的增加,Al4RE相的尺寸增大,降低了合金的力学性能。在加入混合稀土的挤压态合金中,合金中Al4RE相挤压破碎至1-3μm,分布于β-Li基体中和α/β相之间。Mg-9Li-3Al-1.5RE合金获得最好的机械性能,最大抗拉强度和延伸率分别为228.3Mpa和20.8%,同铸态Mg-9Li-3Al相比分别提高了88.6%和197.4%。  相似文献   

10.
采用重力铸造法制备了Mg-16Al-12Zn-4Si-x Ca-y Sb合金,研究了Ca和Sb添加对合金组织及力学性能的影响。结果表明,未添加Ca、Sb时,合金主要由α-Mg基体、β-Mg_(17)Al_(12)、Mg_2Si及Mg Zn_2四相组成;添加微量Ca、Sb后,出现了Mg_3Sb_2和CaSi_2新相,初生Mg_2Si相由粗大的骨骼状转变为多边形块状;随Ca含量的增加,合金的抗拉强度先提高后降低。合金断裂形式为准解理脆性断裂。  相似文献   

11.
《铸造技术》2017,(8):1800-1804
采用X-ray衍射仪、光学显微镜(OM)、扫描电镜(SEM)及拉伸试验机等,研究了Sb含量对Mg-8Al-12Zn-2Si铸态合金显微组织及性能的影响。结果表明,合金主要由α-Mg、β-Mg_(17)Al_(12)、Mg_2Zn_(11)和Mg_2Si相组成。合金添加0.2%~0.8%Sb时,Mg_2Si颗粒由原来粗大的十字状、花瓣状和骨骼状逐渐转变为细小的颗粒及短棒状,最大颗粒尺寸由铸态的50μm减小至10μm;当Sb含量增加到1.0%时,Mg_2Si出现粗化,最大颗粒尺寸约30μm。相应地,合金的拉伸强度、屈服强度和伸长率出现先提高后降低,断裂形式为准解理脆性断裂。  相似文献   

12.
采用金相(OM)、X射线衍射(XRD)、扫描电镜(SEM)、拉伸实验等方法研究了铸态和固溶态Mg-9Al-1Si合金在等通道转角挤压(ECAP)后的组织和力学性能。结果表明:铸态的Mg-9Al-1Si合金经过4道次ECAP变形后,网状Mg_(17)Al_(12)相和汉字状Mg2Si相破碎成颗粒状,但Mg_(17)Al_(12)颗粒的尺寸(~15μm)仍然很大,且Mg_(17)Al_(12)和Mg_2Si颗粒分布不均匀,削弱了合金力学性能。固溶态的Mg-9Al-1Si合金经过4道次ECAP变形后,析出细小的Mg_(17)Al_(12)颗粒(~1μm)和破碎的Mg_2Si颗粒呈均匀分布,晶粒明显细化,力学性能显著提高,抗拉强度、屈服强度和伸长率分别达到了280 MPa、178 MPa和6.8%。  相似文献   

13.
采用重力铸造法制备Mg-8Al-1Zn-1Si-0.6Sb合金,研究了固溶处理对该合金组织及力学性能的影响。结果表明,铸态合金主要由α-Mg、β-Mg_(17)Al_(12)、Mg_2Si、Mg Zn和Mg_3Sb_2相组成。对合金进行430℃×(8~32) h固溶处理,随保温的时间延长,Mg Zn相和β-Mg_(17)Al_(12)相固溶于α-Mg基体;粗大汉字状Mg_2Si相发生球状化;与此同时,合金的室温及高温(150℃)抗拉强度、屈服强度和伸长率逐步提高,硬度逐渐下降。铸态与固溶处理态合金的拉伸断裂形式均呈准解理脆性断裂。  相似文献   

14.
以Mg-9.5Li-2.56Al-2.58Zn合金为对象,研究其组织形貌及相组成。并利用UTM5305电子万能试验机对其进行了不同应变速率以及不同变形量的室温压缩实验,获得真应力-应变曲线,构建合金的室温变形本构方程。研究压缩前后合金的微观组织和压缩性能演变规律。结果表明,Mg-9.5Li-2.56Al-2.58Zn合金包含α-Mg、β-Li、Al_(12)Mg_(17)、AlLi和MgLiAl_2 5相,β-Li为基体相,α-Mg相呈条状或块状,纤维状Al_(12)Mg_(17)相位于α-Mg相内部,颗粒状MgLiAl_2相分布在晶界上,晶内相AlLi呈颗粒状。固溶处理后合金组织中析出相的数量明显减少,合金强度得到提升。根据Mg-9.5Li-2.56Al-2.58Zn合金真应力-应变曲线分析了应变速率对流变应力的影响,挤压态和固溶态合金室温压缩都存在峰值应力和峰值后的软化现象,有利于室温成形;并通过线性回归的方式获得不同状态下的材料本构方程常数n以及ln A–(Q/RT)的值,构建了基于Arrhenius模型的本构方程。合金组织随压缩变形量增加被逐渐压扁、拉长,AlLi相有所增多。  相似文献   

15.
《铸造技术》2019,(1):11-15
采用半固态搅拌+超声处理的方法制备了Mg-9Al-1Si合金和Mg-9Al-1Si-xn-SiC_p(x=0, 0.5%,1%,1.5%和2%)复合材料,利用OM、SEM及室温拉伸等方法研究了显微组织与力学性能。研究表明,半固态搅拌与超声处理复合法可以将n-SiC_p引入到Mg-9Al-1Si合金中,并实现较为均匀的分布;当n-SiC_p含量超过1%时,n-SiC_p出现少量团聚。随n-SiC_p含量的增加,Mg-9Al-1Si合金的基体晶粒尺寸减小、Mg_2Si相显著细化,β-Mg_17Al_12相尺寸变小,并且由连续网状分布变为不连续网状分布;随n-SiC_p含量增加,复合材料的抗拉强度、屈服强度、伸长率呈现先增后减的趋势;n-SiC_p含量为1%时,性能较佳。  相似文献   

16.
通过重熔-凝固试验,研究了接近AA5083合金成分的Al-5Mg-0.8Mn合金的凝固组织。结果表明:Fe和Si元素对Al-5Mg-0.8Mn有重大影响,促进了金属间化合物Al_6(Fe,Mn)和Mg_2Si的形成。当Fe、Si含量很低时,Al-5Mg-0.8Mn合金的凝固组织非常简单,只是在α-Al基体上零星散落着一些细小的Al_6(Fe,Mn)共晶相。当Fe、Si含量较高时,合金中不但出现了大量粗大的Al_6(Fe,Mn)和Mg_2Si共晶相,而且,共晶相Al_6(Fe,Mn)呈现多种不同的形态,而Mg2Si相主要呈汉字状。  相似文献   

17.
通过金相显微镜、扫描电镜、X射线衍射仪等设备分析了Sn对铸态Mg-2.7Nd-0.4Zn-0.5Zr合金显微组织和腐蚀性能的影响。结果表明,铸态Mg-2.7Nd-0.4Zn-0.5Zr-xSn(x=0.5、1.0、1.5、2.0)合金的组织是由α-Mg基体、Mg_(12)Nd相、点状或杆状的Mg_2Sn相组成。随着Sn含量的增加,Mg_2Sn相逐渐增多。铸态合金的腐蚀速率随着Sn含量的增加呈现先减小后增大的趋势,其中当Sn含量为1.0%时合金具有最佳的耐腐蚀性能。Sn的加入能够细化Mg_(12)Nd相,同时析出更稳定性的Mg_2Sn相,并在Sn含量为1.0%时分布较为均匀。  相似文献   

18.
在Mg-9Li双相合金中添加0.5%(质量分数,下同)Ca元素,通过磁悬浮熔炼及铜模吸铸方法熔炼制备了共晶型Mg-9Li-0.5Ca合金。组织观察表明,常规Mg-9Li双相合金中形成的α-Mg相为粗大短板条状,取向随机、均匀无序分布于β-Li基体中。而Mg-9Li-0.5Ca合金中形成了棒状交替排列的(α-Mg+β-Li)共晶团组织,在共晶团内,α-Mg相呈长纤维状(长宽比约为100)、并以一定取向定向排列;相比于Mg-9Li合金,共晶a-Mg相纤维间距及纤维直径显著减小、组织明显细化,a-Mg相体积分数显著增加;同时,大量纳米、亚微米级Mg_2Ca颗粒均匀弥散分布于α-Mg、β-Li晶粒内及两相界面上。由此导致具有该共晶组织的Mg-9Li-0.5Ca合金相比于Mg-9Li合金力学性能显著增加,室温拉伸屈服强度提高3%、抗拉强度提高3.5%,伸长率提高50%。分析表明,微量Ca元素的添加和铜模吸铸产生的较快的冷却速度,诱发Mg-9Li双相中细小(α-Mg+β-Li)共晶组织的形成,显著提高力学性能。  相似文献   

19.
试验研究了铝含量(质量分数/%,下同)对Mg-6Zn-xAl-1RE(x=4,5,6)合金显微组织和性能的影响。结果表明,试验合金主要由α-Mg、呈断网状分布在晶界上的三元相β(Mg_(17)(Al,Zn)_(12))相、杆状的Mg-Al-Zn-RE四元稀土相和一些呈球状的Al_2MnRE相组成。随着铝含量增多,α-Mg晶粒尺寸逐渐变细,三元相β(Mg_(17)(Al,Zn)_(12))相的含量也逐渐增多,合金的显微硬度、抗拉强度和伸长率均逐渐提高。  相似文献   

20.
采用搅拌摩擦加工对汽车轻量化Mg-8Al-1Zn-0.05Y新型镁合金进行改性,并进行了合金的显微组织、物相组成、微观织构和力学性能的分析。结果表明:搅拌摩擦加工使合金的平均晶粒尺寸减小64.6%、织构最大值减小27.69%,显著提高了合金力学性能,其中抗拉强度增加22.2%、屈服强度增加44.6%、断后伸长率增加6.8%;合金仍是由α-Mg基体和少量Mg_(17)Al_(12)相组成,但Mg_(17)Al_(12)第二相由网状结构分布变成弥散的颗粒状分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号