首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为评价一次爆炸复合工艺制备的钛/铝/钛三层复合板的界面结合性能,利用SEM、EDS对钛/铝/钛复合板的双层界面组织形貌以及界面元素分布进行了表征;对钛/铝/钛三层复合板进行了拉伸实验和弯曲变形实验。研究结果表明:复合板界面主要由波状界面和平直状界面构成;铝元素与钛元素在界面上发生了互扩散;拉伸和弯曲变形结果表明,一次爆炸复合工艺制备的钛/铝/钛三层复合板具有较大的抗拉强度和优良的界面结合性能,可以承受后续较大的二次塑性变形。  相似文献   

2.
以纯钛板与纯铝板为原料,通过爆炸复合法制备钛/铝/钛层状复合材料,之后采用热处理以及热压工艺对钛/铝/钛层状复合材料进行进一步处理。结果表明:复合板界面主要由波状界面和平直状界面构成,铝元素与钛元素在界面上发生了互扩散,界面结合性能优良,可以承受后续较大的二次塑性变形;热处理后的复合板界面发生明显扩散,在热处理25 h后热压2.5 h的铝层完全反应,扩散反应层主要由TiAl_3相以及Ti_2Al_5相构成。  相似文献   

3.
本文以纯钛板与纯铝板为原料,通过爆炸复合法制备钛/铝/钛层状复合材料,之后采用热处理以及热压工艺对钛/铝/钛层状复合材料进行进一步处理。研究结果表明:复合板界面主要由波状界面和平直状界面构成,铝元素与钛元素在界面上发生了互扩散,界面结合性能优良,可以承受后续较大的二次塑性变形;热处理后的复合板界面发生明显扩散,在热处理25 h后热压2.5 h后铝层完全反应,扩散反应层主要由TiAl3相以及Ti2Al5相构成。  相似文献   

4.
通过爆炸焊接技术制备的钛/铝复合板可兼具钛合金耐腐蚀性和铝合金低成本的优点。对钛/铝复合板爆炸焊接技术的研究进展进行介绍,论述了炸药种类、质量比R、基覆板间距及爆炸焊接窗口等主要工艺参数对钛/铝复合板组织和性能的影响;分析了影响钛/铝复合板结合界面的主要因素——金属间化合物种类、扩散层和界面波形;对钛/铝复合板硬度、抗剪切强度、抗拉强度及拉伸断口的研究进行了汇总分析。最后,指出了钛/铝复合板爆炸焊接工艺研究的重点发展方向。  相似文献   

5.
文中提出以薄的铝合金板作为过渡层,采用爆炸焊接技术成功制备钛/铝/镁层状复合材料. 对钛/铝接合界面、铝/镁接合界面及钛/铝/镁爆炸复合板的整体力学性能进行了分析研究. OM和SEM试验结果表明,钛/铝接合界面和铝/镁接合界面均为波状接合界面,在铝/镁界面出现了局部熔化区;钛/铝接合界面为小尺寸波(λ=160 μm,h=26 μm),铝/镁接合界面为大尺寸波(λ=1 740 μm,h=406 μm);拉-剪试验表明,复合板沿着铝/镁接合界面断裂;弯曲性能测试表明,钛板一侧受拉时复合板弯曲强度和塑性均优于镁合金板一侧受拉,断裂始于铝/镁接合界面,最终从镁合金板一侧剪切断裂失效.  相似文献   

6.
为了研究钛-钢-钛三层复合板的微观界面和力学性能,在对两次爆炸焊接的动能损耗进行计算的基础上,利用扫描电镜及能谱分析仪对两次爆炸焊接的界面进行了研究比较;对复合板进行了显微硬度测试、弯曲强度试验和剪切强度试验。结果表明:第二次爆炸焊接时的动能损耗更大,动能经过复板向基板传递,导致首次爆炸结合界面缺陷较明显,其熔化层和熔化块数量较多,体积较大;二次爆炸结合界面呈较好的波状结合。首次爆炸焊接界面处的显微硬度高于二次爆炸焊接界面,说明首次爆炸焊接界面的塑性变形更为严重;复合板在弯曲试验中未断裂和分离,抗弯性能良好;首次爆炸焊接界面处的结合强度低于二次爆炸焊接界面,但均满足复合板强度标准。  相似文献   

7.
为减小钛/钢爆炸焊接钛层的使用量,以低爆速乳化炸药作为焊接炸药,食盐作为传压层,成功实现厚度200 μm TA1钛箔与Q235钢的爆炸焊接.通过金相显微镜、扫描电镜和能谱仪对界面微观形貌进行分析,利用万能试验机对复合板试件进行拉伸、弯曲试验检测其结合性能. 结果表明,钛箔/钢界面呈规则的波形,主要以熔化层结合,具有良好的结合质量.靠近界面金属产生强烈的塑性变形,钢侧晶粒呈流线状.波后的旋涡内包含熔化块,未观测到孔洞、裂隙等缺陷.根据Ti和Fe元素原子比例,熔化块成分主要为FeTi,Fe2Ti等金属间化合物.三点弯曲和拉伸试件的界面均未出现分离,复合板材界面具有良好的塑性变形能力和结合性能.拉伸试件断口两侧的钛层与钢层存在大小不一的韧窝,主要呈塑性断裂.  相似文献   

8.
铝/钛/钢爆炸复合板性能研究   总被引:1,自引:0,他引:1  
通过试验加工了船用铝/钛/钢(5083/1060/TAl/CCS-B)爆炸焊接复合板,并对其结合质量、力学性能及界面形态进行了研究.结果表明,将纯铝板1060和钛板TA1作为中间过渡层后,复合板的结合质量良好,且铝/钛界面的剪切强度达到85 MPa以上,其力学性能也均达到了相应标准;钛/钢界面呈规则的正弦波形,产生了较明显的塑性变形;铝/钛界面比较平直,波长较大,波幅较小.  相似文献   

9.
采用包覆的方法模拟可控气氛热复合技术制备了钛/钢双金属复合板,利用光学显微镜观察了结合界面附近的显微组织,借助扫描电镜对拉剪断口进行了分析。结果表明:氩气压力为0.08~0.12MPa,轧制温度为800~850℃,首道次变形率为40%的条件下,钛/钢复合板的拉剪强度不低于为170MPa,同时具备良好的弯曲性能;复合板界面结合良好,无裂纹、气孔等缺陷,界面形成约2μm厚的脆性层,且分布断续;剪切应力作用下,分层和解理是其主要断裂方式,由此可见,采用可控气氛热复合技术制备钛/钢双金属复合板是可行的,尤其对于薄型复合板,该方法能有效降低界面脆性层的影响,具有明显优势。为进一步提高复合板结合性能,应考虑添加合适的中间层材料或调整轧制工艺加以改善。  相似文献   

10.
通过基于冷金属转移的电弧熔丝增材制造技术制备了铝/钛复合材料. 观察到钛/铝结合界面存在元素扩散,形成一定厚度的中间反应层,表明界面结合良好. 同时,通过硬度测试得到界面附近的硬度介于钛侧与铝侧之间,这主要是由于元素扩散导致界面附近生成了硬脆金属间化合物. 考虑到不同的复合比会导致不同力学性能,通过拉伸试验,研究了复合比对带缺口的钛/铝复合材料拉伸力学性能的影响规律. 结果表明,在持续拉伸载荷作用下,钛/铝复合材料的两组成层之间相互影响. 随着复合比的增加,抗拉强度和屈服强度增加,断后伸长率由于受钛铝之间冶金反应的影响较大,当钛/铝试样具有较低复合比时,其断后伸长率甚至小于单一沉积铝,随后才随着复合比的增加而增大. 另外,运用ABAQUS补充了多组复合比下钛/铝复合材料的拉伸过程,得到了复合比与屈服强度和抗拉强度的关系式.  相似文献   

11.
对爆炸复合的钛/钢复合板进行了一道次60%的温轧,研究了一道次温轧钛/钢爆炸复合板的近界面微观组织及剪切强度。结果显示,一道次温轧工艺可以引起钛层和钢层近界面组织的显著剪切变形。由于剪切变形,钛层形成了RD分散织构。钢层含有高组份的旋转立方织构及低组份的γ纤维织构。对比常规多道次轧制方法,由于剪切变形可细化界面化合物,使得一道次温轧钛/钢复合板抗剪切强度得到提升。  相似文献   

12.
采取只加热钛层的方法实现协调变形轧制制备钛/铝复合板,通过剪切实验、金相显微镜、扫描电子显微镜,研究压下率、钛层加热温度对钛/铝复合板的厚比分配、剪切强度和界面的影响。结果表明:随着钛层温度的升高和总轧制压下率的增大,钛铝复合板的钛层和铝层变形率差值逐渐减小;当温度为800℃,轧制压下率为50%时,铝层和钛层的变形率分别达到了51.4%和48.6%,钛铝复合板变形趋于协调。钛与铝的结合界面剪切强度达到107.5 MPa,基本接近铝基体的剪切强度。加热过程中钛板表面会产生氧化层,但是在较大轧制压下率下,钛的氧化层会撕裂,金属铝挤入裂缝与新鲜钛金属接触,在强大压力和高温作用下,钛、铝元素相互扩散从而达到牢固的冶金结合。  相似文献   

13.
袁嘉欣  邵飞  白林越  徐倩  孙斌  王敬涛 《焊接学报》2023,(9):81-87+133-134
将薄层钛合金板与铝合金板结合可以得到具有优异性能的钛/铝复合板,具有广阔的应用前景.采用爆炸焊接技术成功制备了TC1/1060/6061复合板,对2个界面的界面形貌和元素进行测试,分析夹层存在的优势;同时建立与试验条件一致的有限元模型,对界面状态和焊接过程进行分析,最后对复合板进行拉伸试验和剪切试验,验证界面结合质量.结果表明,TC1/1060界面为直线型形貌,1060/6061界面为波状形貌,且每个波形都伴随着涡流区,TC1/1060界面处的元素扩散范围为4.38μm,且没有检测到钛/铝金属间化合物的产生.数值模拟再现爆炸焊接过程中射流的形成,界面温度沿着界面形貌分布,界面压力在碰撞点处达到最大,且呈现出椭圆形分布,复合板具有较高的抗拉强度和剪切强度,满足结构使用需求.  相似文献   

14.
分别采用等厚度装药及分段装药两种不同的装药方式制备了钛/钢复合板,研究了金属复合板在爆炸焊接过程中爆炸压力分布及覆层金属变形规律,并对所制备的Gr1/Gr70爆炸复合板结合界面的微观组织特征和力学性能进行了分析。结果表明,采用分段装药工艺所制备的大面积钛/钢复合板界面无分层、夹杂等缺陷,且各项力学性能均符合ASTM B898—2005标准,能够满足装备的使用要求。  相似文献   

15.
采用Gleeble-3500热模拟试验机进行高温等温压缩实验,研究了爆炸焊接钛铝复合板在变形温度为300~500 ℃、应变速率为0.1~10 s-1条件下的热变形行为,利用动态材料模型构建了钛铝复合板热加工图,并基于热加工图进行了钛铝复合板热轧工艺验证实验。结果表明:钛铝复合板属于正应变速率敏感材料;在热加工图中变形温度为420~460 ℃、应变速率为1.6~6.3 s-1时,功率耗散效率达到0.64~0.72,该区域对应的工艺参数适合进行钛铝复合板热轧;热轧后实验板材界面结合良好,具有良好的力学性能和钣金成形性能。钛铝复合板在热轧过程中的变形机制为:变形抗力低、流动快的铝层在自身发生塑性变形的同时牵引着钛层一起发生塑性变形,其中铝层是热变形,钛层为冷变形。  相似文献   

16.
以爆炸焊制备钛/铝复合板为例,利用数值模拟再现爆炸焊瞬态成形过程,并通过试验分析爆炸焊界面特征。结果表明,由于射流的侵彻作用,沿爆轰波传播方向,钛/铝复合板结合界面由平直结合向波形结合转变。起爆点处压力较小,出现边界效应。爆炸焊撞击区极高的碰撞压力,是促使界面产生塑性变及晶粒细化的原因。高速冲击导致爆炸焊界面缺陷增多,这为原子的扩散提供了通道,从而使钛、铝在界面产生互扩散,实现冶金结合。数值模拟结果与试验结果相吻合,揭示了钛/铝爆炸焊界面的形成机制。  相似文献   

17.
采用电磁感应加热对加入不同厚度纯铁中间层的钛/钢组坯进行加热,并单道次热轧复合,短时高效地制备出高质量钛/钢复合板。研究了在快速电磁感应加热至钢板居里点770℃的条件下,不同厚度纯铁中间层对钛/钢复合板界面组织和结合性能的影响。结果表明,随着中间层厚度的降低,复合板剪切强度逐渐提高,加入0.3 mm厚纯铁中间层复合板的剪切强度达到215.05 MPa。感应加热低温轧制条件下,减少了复合板界面脆性金属间化合物的生成。纯铁中间层有效地促进了结合界面两侧基体的协调变形,同时增加了界面处基体元素间的相互扩散距离,使复合板实现了良好的冶金结合,获得了综合性能较好的钛/钢复合板。  相似文献   

18.
利用真空热轧复合方法制备了钒中间层钛/钢复合板,采用SEM、EDS和XRD等分析结合界面形貌、元素扩散行为和界面相组成。结果表明:钒中间层钛/钢复合板界面实现了良好的冶金结合。与拉剪强度测试相结合,研究了钒中间层钛/钢复合板结合界面结构与力学性能。结果表明:钒中间层钛/钢复合板剪切强度均优于国家标准(140 MPa)。950℃轧制的复合板界面扩散层厚度大于900℃轧制的复合板扩散层厚度。钒中间层与Ti、Fe元素形成固溶体,有效阻止了金属间化合物TiFe和TiFe_2的产生。900℃轧制的钛钢复合板剪切强度为223 MPa,大于950℃轧制的复合板剪切强度。对剪切断口的分析表明裂纹多沿钒铁固溶体产生并扩展。  相似文献   

19.
提出了一种移动感应加热异温轧制制备钛/铝复合板的方法,应用电磁感应单独加热移动的钛板,与室温铝板轧制复合,实现钛和铝的协调变形,提高了复合板的结合强度。采用ANSYS有限元软件模拟移动感应加热过程中钛板的温度变化过程,确保在轧辊入口位置时,钛板沿宽度方向温度分布均匀。基于有限元模拟结果确定钛板移动速度和感应加热参数,并进行了移动感应加热和轧制复合实验,研究了不同压下率对于钛/铝复合板协调变形和结合强度的影响。结果表明:随着压下率的增加,钛/铝变形率差值先减小后增大,当轧制压下率为39.4%时,钛/铝轧制变形率基本一致,轧后复合板平直,界面剪切强度最高,达到124.6 MPa,剪切断裂发生在铝基体上。  相似文献   

20.
采用爆炸复合法制备了Q345R/304爆炸复合板,借助光学显微镜、力学性能试验等对爆炸复合板结合区的显微组织、结构及性能进行了研究。结果表明:爆炸复合板结合界面呈波浪形,复合板结合界面到两侧分别形成了细晶区、纤维区和扭曲晶粒区;复合板具有较高的拉伸强度和伸长率,冲击吸收功为68 J;从覆层表面到结合界面,不锈钢侧硬度更高,硬度升高趋势更显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号