首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文通过两种不同冷却速度制备成分相同、铸造组织特征不同的Mg-4.4Zn-0.3Zr-0.4Y铸态合金,研究不同铸造组织特征对挤压变形态合金组织和力学性能的影响。研究结果表明:与空冷铸造合金相比较,通过水冷冷却增大了熔体冷却速度,使铸态组织得到细化,抑制了W-相(Mg3Y2Zn3相)的形核,并促进了I-相(Mg3YZn6相)的生成,获得了更大体积分数的准晶相(I-相)。经过挤压变形后,水冷铸造合金中的再结晶晶粒细小均匀,经过挤压变形破碎的细小I-相颗粒弥散分布在基体上,{0002}基面织构得到弱化,而{101 ?2}织构强度增强,从而使挤压态Mg-4.4Zn-0.3Zr-0.4Y合金的强度和塑性都得到了大幅的提高。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y合金经过挤压变形后,屈服强度和抗拉强度分别达到297.0MPa和327.3MPa,与空冷铸造挤压态合金相比分别提高了46.4MPa和21.4MPa。水冷铸造Mg-4.4Zn-0.3Zr-0.4Y挤压态合金的延伸率达到14.8%,与空冷铸造挤压态合金相比增大了4.7%。  相似文献   

2.
研究了不同挤压温度对Mg-2.0Zn-0.3Zr-0.9Y新型镁合金组织和性能的影响。结果表明,降低挤压温度,Mg-2.0Zn-0.3Zr-0.9Y合金的平均晶粒尺寸得到显著细化,合金的屈服强度和抗拉强度得到大幅提高,而延伸率变化不大。随着挤压温度的降低,{10ī2}织构强度不断增强,{0002}基面环形织构强度减弱。Mg-2.0Zn-0.3Zr-0.9Y合金的力学性能不但受到组织平均晶粒大小的影响,还受到织构分布的影响。挤压温度为330℃时可获得细小的组织和优良的力学性能,平均晶粒尺寸达到1.76μm,合金抗拉强度达到323MPa,屈服强度为309MPa,延伸率为21.92%。  相似文献   

3.
通过改变挤压温度以获得含有不同堆垛结构长周期相(LPSO)的Mg-2.0Zn-0.3Zr-5.8Y合金,研究LPSO相堆垛结构转变对挤压态合金组织性能的影响规律及其作用机制。结果表明:挤压温度为390℃,合金中有18R和14H 2种堆垛结构的LPSO相,其平均晶粒尺寸为(9.5±3.0)μm,合金的抗拉强度达到280 MPa,延伸率为18.7%;当变形温度达到420℃,合金中18R LPSO相全部转变为14H结构,平均晶粒尺寸大幅细化至(3.1±1.1)μm,合金的抗拉强度和延伸率均得到明显提高,分别达到330 MPa和20.8%;随着挤压温度的进一步提高,合金的平均晶粒尺寸逐渐变大,强度和延伸率开始逐渐降低。由于LPSO相堆垛结构转变和晶粒尺寸变化引起基面织构和柱面织构的强度发生变化,LPSO相形态改变以及晶粒细化是Mg-2.0Zn-0.3Zr-5.8Y挤压态合金室温力学性能变化的主要因素。  相似文献   

4.
对一种新型生物医用镁合金Mg-3Zn-1Y-0.6Zr-0.5Ca分别在270,300和330°C下进行铸造和挤出实验。通过拉伸试验、光学显微镜、扫描电子显微镜、能量色散光谱、X射线衍射技术、透射电子显微镜和电子背散射衍射研究铸态和不同挤出参数下挤压态合金的显微组织和力学性能。结果表明,270°C挤压态合金具有最佳的综合力学性能,其极限拉伸强度和伸长率分别达到315MPa和26%,这与晶粒细化、较弱的基底织构和第二相强化有关。经热挤压后,Mg-3Zn-1Y-0.6Zr-0.5Ca合金出现大量动态再结晶。连续的Mg_3YZn_6相带逐渐分裂成不连续的链状或点状结构,且晶粒分布更均匀。挤压态Mg-3Zn-1Y-0.6Zr-0.5Ca合金呈(0001)基面平行于挤出方向的弱织构特征。  相似文献   

5.
针对生物医用Mg-3Zn-0.2Ca的显微组织、力学性能以及生物腐蚀行为,采用X射线衍射(XRD)、光学显微镜(OM)、扫描电镜(SEM)、拉伸实验机、电化学以及浸泡测试方法进行了研究。XRD结果表明Mg-3Zn-0.2Ca合金中的第二相主要为Mg_7Zn_3,Mg_2Zn_3,Mg_4Zn_7等金属间化合物相。相比于铸态,经过56:1挤压比变形后的Mg-3Zn-0.2Ca合金晶粒明显细化,平均晶粒尺寸从119.1μm降到2.5μm,降低了47.6倍。挤压态Mg-3Zn-0.2Ca合金的屈服强度(0.2%TYS)、抗拉强度以及延伸率分别为205,336 MPa和17.85%,电化学以及浸泡测试表明挤压态合金的耐蚀性明显优于铸态Mg-3Zn-0.2Ca合金,其主要归因于晶粒细化。新设计的生物医用Mg-3Zn-0.2Ca合金呈现出了良好的综合力学性能以及生物耐蚀性。  相似文献   

6.
稀土元素Y和Nd对ZK60合金组织与性能的影响   总被引:1,自引:0,他引:1  
以ZK60变形镁合金为基础添加稀土元素Y和Nd,获得了化学成分(质量分数)分别为Mg-5.5Zn-0.7Zr-0.4Y-0.4Nd,Mg-5.5Zn-0.7Zr-0.5Y-0.5Nd和Mg-5.5Zn-0.7Zr-0.6Y-0.6Nd的镁合金。采用金相显微镜、扫描电镜和X射线衍射仪等观察了ZK60合金和ZK60RE合金的铸态、均匀化以及轧制态的显微组织。结果表明,稀土元素Y和Nd混合添加能够细化ZK60合金的铸态、均匀化以及轧制态组织,并且可以明显提高其室温断裂强度,在该文试验范围内,随着稀土元素含量的增加室温断裂强度增加,其中化学成分为Mg-5.5Zn-0.7Zr-0.5Y-0.5Nd和Mg-5.5Zn-0.7Zr-0.6Y-0.6Nd的合金比未添加稀土元素的ZK60合金室温断裂强度分别提高了20.09%和20.56%。  相似文献   

7.
本文主要通过OM、SEM、EDS和XRD等研究了铸态及挤压态Mg-2Zn-1Mn-xY (Y=0,0.8,2.2,wt.%) 镁合金显微组织和力学性能。由实验结果可知,稀土Y的添加,不仅可以细化铸态及挤压态合金晶粒,还可以弱化挤压态合金的基面织构强度,从而同时提高合金的强度以及韧性。本文中最优化合金挤压态Mg-2Zn-1Mn-xY合金具有良好的力学性能,与原始Mg-2Zn-1Mn合金相比,屈服强度从164MPa提高到204MPa、抗拉强度从237MPa提高到298MPa以及延伸率从12%增加到18%。  相似文献   

8.
研究Ca含量(0.1%,0.5%(质量分数))对Mg-1.5Zn-0.3Gd-Ca合金铸态组织、轧制板材组织、织构与力学性能的影响,以期通过改善合金组织和织构发展高塑性镁合金板材。结果表明:Mg-1.5Zn-0.3Gd-0.1Ca铸态合金含有细小均匀的第二相,Mg-1.5Zn-0.3Gd-0.5Ca合金中则存在大块状第二相;二者的轧制板材均呈现非基面织构;轧制板材经过退火处理后发生完全再结晶,板材的塑性可大幅度提高,Mg-1.5Zn-0.3Gd-0.1Ca合金经300℃退火后,沿横向和轧制方向的伸长率分别可达34.9%和34.1%,且轧制板材沿横向和轧向屈服强度的差异性减小。  相似文献   

9.
采用扫描电镜、X射线衍射、透射电镜、显微硬度测试和拉伸试验等研究了热处理方式(固溶、退火和时效)对Mg-2Nd-0.5Zn-0.4Zr-1Y(mass%)合金微观组织和力学性能的影响。结果表明:热处理工艺能够降低Mg-2Nd-0.5Zn-0.4Zr-1Y合金中元素的偏析程度,改善合金的组织均匀性;合金显微组织均主要由α-Mg基体、Mg_(12)Nd和Mg_(24)Y_5组成;铸态合金抗拉强度和伸长率分别为153.4 MPa、15.63%;固溶处理和退火处理后,合金抗拉强度和伸长率均得到提高,固溶态合金为168.5 MPa和16.7%,退火态合金为162.3 MPa和17.7%;时效处理后合金的抗拉强度大幅度提高到207.7 MPa,但伸长率略降低到13.49%;综合考虑合金的组织和力学性能,时效处理合金的性能最优。  相似文献   

10.
通过常规铸造制备了3种成分的低合金化Mg-Zn-Y合金(Mg-0.6Zn-0.1Y、Mg-1.3Zn-0.1Y、Mg-2.0Zn-0.1Y,质量分数,%),并对其进行低温慢速挤压(140℃,0.1mm/s)。结果表明:随Zn含量的增加,挤压前合金的晶粒尺寸逐渐减小。挤压后合金晶粒显著细化,形成弥散的纳米析出相,同时随Zn含量的增加合金的再结晶程度与纳米析出相的数量均增加,基面织构强度则无显著变化。挤压后合金的力学性能得到大幅提升,其中Mg-2.0Zn-0.1Y合金的屈服强度、抗拉强度和延伸率分别达到406.4 MPa、424.53 MPa、12.2%。随Zn含量增加,Mg-Zn-Y合金的延伸率显著增加,其断口形貌由解理面转变为细小的韧窝,断裂方式由解理断裂转变为韧性断裂。  相似文献   

11.
本文通过常规铸造制备了三种成分的低合金化Mg-Zn-Y (Mg-0.6Zn-0.1Y、Mg-1.3Zn-0.1Y、Mg-2.0Zn-0.1Y,wt.%),并对其进行低温慢速挤压(140℃,0.1mm/s)。研究结果表明:随Zn含量的增加,挤压前合金的晶粒尺寸逐渐减少。挤压后合金晶粒显著细化,形成弥散的纳米析出相,同时随Zn含量的增加合金的再结晶程度与纳米析出相的数量均增加,基面织构强度则无显著变化。挤压后合金的力学性能得到大幅提升,其中Mg-2.0Zn-0.1Y合金的屈服强度、抗拉强度和延伸率分别达到406.4MPa、424.5MPa、12.2%。随Zn含量增加,Mg-Zn-Y合金的延伸率显著增加,其断口形貌由解理面转变为细小的韧窝,断裂方式由解理断裂转变为韧性断裂。  相似文献   

12.
采用显微组织观察、拉伸试验、密度测试等研究了不同挤压铸造压力对Mg-4Zn-1.2Y合金显微组织与力学性能的影响。结果表明:随着挤压压力的增加,Mg-4Zn-1.2Y合金的平均晶粒尺寸和第二相体积分数逐渐减小,挤压压力从0增加到150 MPa时,合金晶粒细化明显,挤压压力超过150 MPa后,合金晶粒细化趋势变缓。随着挤压压力的增加,Mg-4Zn-1.2Y合金的抗拉强度、屈服强度、伸长率及密度均逐渐增加。与挤压压力为0 MPa的合金相比,挤压压力150 MPa的合金抗拉强度、屈服强度和伸长率分别提高了24.4%、23.3%和72.7%,力学性能显著提高,挤压压力超过150 MPa后,合金力学性能提高幅度变缓。  相似文献   

13.
研究了Mg含量、冷却速度、固溶处理对Al-6.8Mg-0.3Mn、Al-3.8Mg-0.3Mn两种合金力学性能的影响。结果表明,随着Mg含量提高,晶界相增多。当Mg含量提高到6.8%时,晶界出现网状组织;随着Mg含量升高,合金强度提高,塑性下降;通过砂型铸造空冷、金属型铸造空冷、金属型铸造淬火来实现不同的冷却速度,发现金属型淬火试样的金相组织中,在晶界附近没有析出网絮状或颗粒状第二相,而强度和伸长率要高于其他两种工艺。两种合金经过430℃×60h固溶处理后,合金的综合力学性能得到大幅度提高。Al-6.8Mg-0.3Mn金属型铸造空冷试样固溶后抗拉强度由280MPa提高到335MPa,伸长率由10.4%提高到20%。  相似文献   

14.
利用光学显微镜、X射线衍射和扫描电镜等对挤压态和时效态Mg-6Zn-1Mn-4Sn和Mg-6Zn-1Mn-4Sn-0.5Y镁合金的微观组织和力学性能进行研究。结果表明:与ZMT614镁合金相比,添加Y元素后,ZMT614-0.5Y晶粒得到细化,综合力学性能得到提高。Mg-6Zn-1Mn-4Sn-0.5Y合金的相组成为α-Mg、Mg Zn2、Mn、Mg2Sn和MgS n Y相。经过T6热处理后,合金的抗拉强度和屈服强度明显得到提高,伸长率明显被降低。理论计算表明,在挤压态合金中,细晶强化和固溶强化产生重要的作用,而在T6热处理态合金中,析出强化产生决定作用。  相似文献   

15.
研究了往复挤压对准晶增强Mg-0.85Zn-0.15Y-0.6Zr铸态合金显微组织及力学性能的影响。结果表明,往复挤压可大幅度细化Mg-0.85Zn-0.15Y-0.6Zr铸态合金组织,且使I相等相对均匀地分布在α-Mg基体中。同铸态合金相比,挤压后Mg-0.85Zn-0.15Y-0.6Zr合金的屈服强度、抗拉强度和延伸率分别提高了75.8%,43.2%和35%。  相似文献   

16.
《铸造》2020,(7)
分别采用金属型铸造、常规挤压铸造和流变挤压铸造法制备了轮毂用Mg-2.9Nd-0.18Zn-0.35Zr镁合金,对比分析了三种不同铸造工艺下铸态和T6态镁合金的显微组织和力学性能,探讨了镁合金的强化机理。结果表明,金属型铸造合金的组织为α-Mg和以鱼骨状形式存在于晶界处的Mg_(12)Nd共晶相,平均α-Mg相尺寸约51μm,常规挤压铸造和流变挤压铸造合金的α-Mg相尺寸和Mg_(12)Nd相相似,但是后者的α-Mg相更加细小;三种铸造工艺下镁合金的主要物相都为α-Mg和Mg_(12)Nd,金属型铸造合金中α-Mg的晶格常数要比常规挤压铸造和流变挤压铸造的小。三种铸造工艺下T6态镁合金基体中都析出了细小短棒状β'相,且T6态常规挤压铸造和流变挤压铸造镁合金中β'相的尺寸相对金属型铸造更大,而T6态流变挤压铸造镁合金中还发现了细小盘状β"相。铸态和T6态镁合金的抗拉强度和屈服强度为:流变挤压铸造常规挤压铸造金属型铸造;T6态常规挤压铸造和流变挤压铸造相对金属型铸造镁合金的强度提高主要来自细晶强化和析出强化,且流变挤压铸造的细晶强化和析出强化效果要优于常规挤压铸造。  相似文献   

17.
本文研究了钙对Mg-4Zn合金组织,织构及力学性能的影响。铸态Mg-4Zn合金包含α-Mg相和MgZn相,Ca的加入还生成了Ca2Mg6Zn3三元相。结果表明,Ca显著细化挤压板材的晶粒尺寸,弱化板材织构。沿着板材横向,Mg-4Zn-0.3Ca合金的屈服强度为163MPa,最终抗拉强度达到260MPa。并且,加钙后的合金延伸率从Mg-4Zn合金的19%提高到24%。本文分析了合金的再结晶机制,织构演变机理和强韧化机制,另外,合金力学性能与各向异性也得到了分析。  相似文献   

18.
研究了热轧及退火对3种Mg-Zr系阻尼合金(Mg-0.6Zr、Mg-0.6Zr-0.4Zn、Mg-0.6Zr-0.4Zn-1.5Cd)组织和性能的影响。结果表明:热轧使晶粒发生明显细化,力学性能获得提高。铸态合金的阻尼性能与应变振幅有关,随着应变振幅的提高而不断提高;经热轧,合金的阻尼性能显著下降,几乎与应变振幅无关;热轧后的退火处理使合金的阻尼性能又有上升,但低于铸态水平。在各种状态下,Mg-0.6Zr-0.4Zn和Mg-0.6Zr-0.4Zn-1.5Cd合金的力学性能明显高于Mg-0.6Zr合金,而铸态时的阻尼性能与Mg-0.6Zr合金的相差不大,但经过热轧及退火之后又有较大差距。Mg-Zr系合金上述阻尼性能的变化可以用Granato-Lücke位错模型来解释。  相似文献   

19.
研究了铝和锂元素含量不同的Mg-12Gd-1Zn-0.5Zr-0.5Ag(质量分数,%)合金经T6热处理后的组织演变和力学性能。结果表明,T6热处理后,有新的Mg3Gd颗粒从Mg-12Gd-1Zn-0.5Zr-0.5Ag合金中析出,且Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的大多数Al2Li3相变得更细小,分布更均匀。时效态Mg-12Gd-4Al-3Li-1Zn-0.5Zr-0.5Ag和Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金中的晶粒尺寸和c/a比值相比时效态Mg-12Gd-1Zn-0.5Zr-0.5Ag合金有显著的减小,这有利于提高抗拉强度和塑性。时效态Mg-12Gd-6Al-5Li-1Zn-0.5Zr-0.5Ag合金具有最佳的抗拉强度、弹性模量和塑性匹配,其抗拉强度为210 MPa,弹性模量为50.7 GPa,延性率为24.8%。  相似文献   

20.
采用差热分析(DSC),金相显微镜(OM),扫描电镜(SEM),能谱分析(EDS)和X射线衍射研究了Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y合金均匀化过程中微观组织演化;另外,测试了维氏硬度。研究发现,铸态Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y合金包含:和相。铸态试样的吸热峰在510℃,合金经500℃,16h均匀化处理后吸热峰消失。经470和490℃均匀化处理后,少量的W相溶解;而经过500℃,16h均匀化处理后,仅有少量W,I和X相存在,枝晶偏析基本消除,最佳均匀处理工艺为500℃,16h。均匀化处理可以将Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y合金的硬度从1852降到1442MPa,这样有利于后续塑性变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号