首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
多束流电子束焊是一种能够同时产生多个电子束流作为焊接热源的电子束焊接新技术,能够有效的减小焊接应力和变形。为了减小Ti6Al4V钛合金薄板焊接变形,本文提出了一种新型的多束流电子束焊接技术,除了熔化金属的主束流外,还包括两个对称分布的辅助束流用来焊后加热。分别用传统电子束焊和多束流电子束焊对1 mm厚的Ti6Al4V钛合金薄板进行焊接试验,试验表明,通过调节两个辅助束流的位置和能量分布,多束流电子束焊能够有效减小钛合金薄板的焊接变形。  相似文献   

2.
针对1.2mm厚Ti6A14V钛合金薄板进行了电子束焊接工艺试验,消除了薄板焊接常见的塌陷、熔切等缺陷,获得成形均匀和质量良好的焊缝;在光学显微镜和扫描电镜下观察了钛合金焊缝组织分布规律,焊缝区以马氏体为主,热影响区组织为α+β双态及少量马氏体;接头焊缝区显微硬度高,整体横向呈马鞍形分布.结果表明,薄板Ti6A14V钛合金电子束焊接接头拉伸强度与基材相当,但断后伸长率低于母材.  相似文献   

3.
钛合金Ti6Al4V超声波焊接研究   总被引:1,自引:0,他引:1  
结合超声波金属焊接方法的特性和钛合金的焊接性分析,得出超声波金属焊接方法极其适用于钛合金薄片的焊接;通过扫描电镜观察和撕裂试验,对Ti6Al4V钛合金在不同焊接工艺参数下的焊接接头的横断面形貌及其力学性能进行了分析.结果表明:随着焊接时间的增长(即焊接能量的增大)接头横断面的削减程度增大,焊接时间是焊件质量的决定性因素;在1144.53N的静压力下Ti6Al4V钛合金的最佳焊接时间为125ms,其界面结合强度最高.  相似文献   

4.
为了减小薄板结构的焊接变形,基于电子束高频偏转扫描技术在焊缝两侧添加辅助扫描热源实现了多束流电子束焊接及焊前预热. 建立了矩形均匀加热辅助热源模型,采用热弹塑性有限元分析方法对1.5 mm厚304不锈钢薄板进行多束流电子束焊接数值模拟,并进行了试验验证. 结果表明,焊后残余应力和变形的实测结果与模拟结果吻合良好,多束流电子束焊接方法不仅可以改变熔池前方材料的受力状态,而且可以减小熔池形成瞬间熔池前方材料的压应力峰值,有利于减小熔池的前方压缩塑性应变,进而减小薄板结构的焊接变形.  相似文献   

5.
通过对Ti6Al4V钛合金进行不同工艺的热处理,分析了不同工艺处理后的显微组织,进行了拉伸试验、示波冲击试验测试。研究固溶时效处理对Ti6Al4V钛合金显微组织、力学性能和冲击韧性的影响。利用金相显微镜、环境扫描电镜(ESEM)进一步分析了钛合金的组织、冲击断口特征与力学性能间的关系。结果表明,随固溶温度升高,钛合金屈服强度和抗拉强度得到显著提高,塑韧性先增加后降低。优化热处理工艺后,Ti6Al4V钛合金经960℃/1 h+WQ和500℃/4 h+AC处理,获得优良综合性能,σ_(0.2)为1050 MPa,σ_b为1120 MPa,A_k为46.22 J·cm~(-2)。钛合金固溶时效后的组织由β基体和析出的α相组成,片层状β相和小针丛状α相组织能提高合金综合性能。  相似文献   

6.
Ti6Al4V钛合金的变形组织及织构   总被引:1,自引:0,他引:1  
在温度850~930°C、应变速率0.01~1 s-1的条件下,对初始组织为等轴组织的Ti6Al4V钛合金进行变形程度为70%的热压缩变形实验,研究合金的变形组织及织构。结果表明,当温度低于900°C、应变速率高于0.1 s-1时,合金的组织主要是拉长的α晶粒;而在高于900°C以及低应变速率下,则会发生动态再结晶。电子背散射衍射(EBSD)结果显示,合金在再结晶过程中亚晶界吸收位错,最终形成大角晶界。在930°C时动态再结晶已基本完成,水冷至室温时形成针状α相。与原始组织相比,合金在930°C变形时织构得到增强,低于930°C变形时织构变弱。  相似文献   

7.
研究了Ti6Al4V合金在不同置氢温度、保温时间和氢压下的吸氢行为,利用光学显微镜研究了氢在钛合金中的分布规律。结果表明,Ti6Al4V合金的氢含量是由置氢温度、保温时间和氢压来控制的。随着置氢温度的升高,氢含量先增加后降低。随着氢压的增加,氢含量直线增加。钛合金的吸氢过程实质上是氢的扩散过程,随着保温时间的增加,合金中的氢分布逐渐趋于一致。  相似文献   

8.
研究了电子束快速成形TI6AL4V和Ti45Al7Nb合金混合粉末的特点,得到了成分均匀的Ti22Al3.5Nb2V合金。利用光学显微镜、扫描电镜、电子探针等手段,研究了成形试样的内部组织,并测试了不同组织区域的显微硬度。结果表明:TI6AL4V和Ti45Al7Nb合金混合粉末在电子束成形后,成分均匀,组织具有沉积态特征,包括板条马氏体区和α_2+β两相区,板条马氏体区位于成形零件顶部10个熔覆层厚度,在成形过程中,受再热循环的影响,已凝固形成的马氏体不断分解形成α_2+β两相区,α_2为短棒状,β分布于α_2相之间,在成形件底部,部分α_2相发生等轴化。显微硬度测试结果显示,马氏体区硬度明显高于α_2+β两相区。拉伸结果显示,抗拉伸强度为1214.3MPa,延伸率达到18%。  相似文献   

9.
对Ti6Al4V钛合金薄板在退火过程中发生的热处理畸变进行计算机模拟和试验研究,采用MSC.marc软件建立三种有限元模型,分析对比三种模型畸变模拟结果及试验结果,研究薄板热处理畸变规律。结果表明,残余应力引起的蠕变和弹性应变是畸变的主要原因,热粘塑性模型(Model 3)能较为准确地预测Ti6Al4V钛合金薄板退火畸变,热弹塑性模型(Model 1)模拟结果与试验结果差别较大,蠕变是预测畸变准确性的关键因素。残余应力导致薄板上下两部分X、Y方向应变,迫使薄板发生弯曲畸变,内部残余应力是薄板在退火过程中发生畸变的根本原因。重力改变弹性应变方向,总应变增大,从而使得薄板畸变量增大。  相似文献   

10.
<正>申请号:CN202211052421.X申请日:2022-08-29公开(公告)日:2023-12-19公开(公告)号:CN115740306B申请(专利权)人:西部超导材料科技股份有限公司摘要:本发明公开的Ti6Al4V钛合金棒材的制备方法包括高温锻造、低温锻造+高温锻造、低温拔长及成形锻造。本发明摒弃了传统的棒材自由锻多火次镦拔的工艺方案,采用高低高工艺,充分利用再结晶与温度和时间的关系,通过高低两个温度段的坯料拔长锻造,采用拔长弹簧砧和成形弹簧砧拔长成形工艺,有效实现Ti6Al4V钛合金棒材组织的细化均匀以及锻造过程中的一致性,且能够大幅提高生产效率及成品率。  相似文献   

11.
利用等离子表面合金化技术对Ti6Al4V表面进行Cu/Ni合金化处理,采用SEM研究了温度对合金层微观结构的影响,采用GDS和XRD对合金层的成分和相组成进行测试。结果表明,850℃制备的合金层与基体冶金结合,厚度约7μm,主要由Ti,Ti2Ni,TiNi,Cu0.81Ni0.19和CuTi相组成。抗菌结果表明,合金化试样在12 h内展现了优良的抗菌性能。表面合金层也显著提高了钛合金的耐磨性能。  相似文献   

12.
吴新强  王少刚  李燕 《电焊机》2011,41(6):6-12
采用有限元方法模拟分析了厚6 mm的Ti-6Al-4V钛合金电子束焊接过程,计算研究了瞬态温度场的分布特点、规律及特征点的温度变化历程,在准确计算焊接温度场的基础上通过热-应力顺序耦合,模拟计算了Ti-6Al-4V钛合金电子束焊接头的应力场的分布特征.结果表明:模拟计算的焊缝形貌与实际焊接试验所得基本吻合,焊接温度场整...  相似文献   

13.
为了分析微弧氧化电压对Ti6Al4V(TC4)合金腐蚀和磨损性能的影响,分别在400、420和450 V对电子束选区熔化(SEBM)制备的TC4样品进行微弧氧化表面处理。结果表明,随着氧化时间和温度的增加,亚稳态锐钛矿型TiO2逐渐转变为金红石型TiO2。MAO膜表面形貌主要是尺寸分布均匀的大量微孔,仅在450V电压下出现裂纹和>10μm的孔隙;MAO膜厚度与施加电压呈正相关。MAO膜的耐腐蚀性能和磨损性能与其相成分、表面微孔尺寸分布及膜厚有关;当MAO电压为420 V时,腐蚀电流密度最小(0.960×10-7 A/cm2),阻抗最大(7.17×105Ω·cm2),耐腐蚀性能最好;相同载荷条件下,涂层的摩擦因数及磨损量均大于基体的;随着MAO施加电压的增加,MAO膜的磨损机制由磨粒磨损转变为粘着磨损,且450V电压时粘着磨损加剧,摩擦因数也最大,为0.821。  相似文献   

14.
为了分析微弧氧化电压对Ti6Al4V(TC4)合金腐蚀和磨损性能的影响,分别在400、420和450 V对电子束选区熔化(SEBM)制备的TC4样品进行微弧氧化表面处理。结果表明,随着氧化时间和温度的增加,亚稳态锐钛矿型TiO_2逐渐转变为金红石型TiO_2。MAO膜表面形貌主要是尺寸分布均匀的大量微孔,仅在450V电压下出现裂纹和10μm的孔隙;MAO膜厚度与施加电压呈正相关。MAO膜的耐腐蚀性能和磨损性能与其相成分、表面微孔尺寸分布及膜厚有关;当MAO电压为420 V时,腐蚀电流密度最小(0.960×10~(-7) A/cm~2),阻抗最大(7.17×10~5Ω·cm~2),耐腐蚀性能最好;相同载荷条件下,涂层的摩擦因数及磨损量均大于基体的;随着MAO施加电压的增加,MAO膜的磨损机制由磨粒磨损转变为粘着磨损,且450V电压时粘着磨损加剧,摩擦因数也最大,为0.821。  相似文献   

15.
利用Compu ThermPandat?软件及其自带的Ti数据库完成对双相Ti合金的热力学计算。对Ti6Al4V(5级)合金进行等温压缩,合金的初始组织为由层片状的(α+β)和β相组成的层片团结构。采用X射线衍射分析、扫描电镜和透射电镜表征材料的显微组织演化和相转变。用吉布斯自由能-温度和相含量-温度关系图预Ti_3Al或α_2 (hcp)相的存在、稳定性和相变温度。等温压缩后,(α+β)相区的特征为α/β片层的重新定向和局部扭曲以及在α/β界面区的开裂。而在α→β相变区,β相和α/β相界发生变形,大量的α相转变为β相,板条状α相发生马氏体相变和球化。在β相区,α相完全转变为β单相。结果表明,变形Ti6Al4V合金中形成Ti_3Al或α_2(hcp)、β(bcc)和α(hcp)相以及密排六方α'和斜方α'相。变形温度对屈服应力水平、动态回复和动态球化均存在影响。  相似文献   

16.
激光参数对Ti6Al4V钛合金激光冲击成形的影响   总被引:1,自引:1,他引:1  
研究在Ti6Al4V合金激光冲击成形过程中,不同激光参数对板料弯曲角及表层硬度的影响。结果表明:当激光功率密度小于3GW/cm2时,弯曲角随着激光功率密度线性增加,激光功率密度超过3GW/cm2时,由于表面熔化现象的出现,弯曲角出现减小的趋势;板料弯曲角随冲击次数的增加也呈线性增长,但弯曲阻力的增加使得弯曲角的增长速度逐渐减慢;随着激光功率密度的增加,材料表面冲击区的硬度增高,表面硬化层的显微硬度最高达HV490,硬化层厚度约为1.0mm。  相似文献   

17.
在823~1023 K的氢化温度范围内对Ti6Al4V合金进行了压力-成分等温线测试,研究了Ti6Al4V合金的相变和吸氢热力学。结果表明,当Ti6Al4V合金在不同的氢化温度下进行置氢处理时,氢压随着氢含量的增加而逐渐升高。由于Ti6Al4V合金中原始β相的存在,在置氢处理过程中,每个压力-成分等温线只有一个倾斜的压力平台。根据Vant’s Hoff定律,压力平台区的焓变值和熵变值分别为-50.7±0.26 k J/mol和-138.4±0.69 J·K~(-1)·mol~(-1)。随着置氢温度的升高,Sieverts常数呈先增大后逐渐减小的趋势。分析了Ti6Al4V合金在置氢处理过程中的相组成和相变。  相似文献   

18.
针对Ti6Al4V合金低温渗氮的问题,设计了一种渗氮工艺,研究了该工艺对Ti6Al4V合金组织和力学性能的影响。通过变形增强渗氮动力,使渗氮可以在较低温度(500°C)下实现,氮化与Ti6Al4V合金基体的弥散强化同时进行。实验过程为固溶强化→室温下冷轧变形→500°C低温渗氮。结果表明,在渗氮一段时间后,试样表面形成了白亮的氮化层并且趋于稳定,变形量和变形时间对氮化层的影响不明显。试样基体组织时效效果明显,表面硬度与基体组织硬度随变形量增加而增加。经XRD物相分析,试样表面生成的氮化物为Ti N、Ti_2N、Ti_4N_(3-X)和Ti_3N_(1.29),横截面氮化物为Ti_3N_(1.29)和Ti N_(0.3)。对经过变形、渗氮和时效等工艺的试样进行摩擦磨损实验,渗氮试样的耐磨性最好。  相似文献   

19.
文章采用单因素试验法,用未涂层硬质合金刀具和TiAlN涂层硬质合金刀具对Ti6Al4V钛合金进行了车削试验,通过对切削过程中刀具寿命、切削力、切削温度以及加工表面粗糙度的分析,得出了两种刀具车削钛合金的切削性能,为钛合金车削试验提供了依据.  相似文献   

20.
材料成形过程中,一个备受关注的问题是能否实现在不发生开裂的基础上达到要求的变形。本实验基于热压缩实验(变形温度为1123~1373 K,应变速率为0.01~10 s~(-1),变形量为70%)获得的开裂样本,证实了铸态Ti40合金的主要开裂模式为45°剪切开裂、自由表面纵向开裂和内部三叉晶界沿晶开裂。借助SEM重点分析了变形参数对开裂机制的影响规律,发现在低温1123 K变形时,主要是穿晶解理脆性断裂,1273 K变形时,转变为韧性断裂,高温1373 K变形时,大量的小韧窝被观察到;应变速率对铸态Ti40合金的开裂行为也具有重要影响,在低应变速率0.01 s~(-1)变形时,样本没有发生开裂,在0.1和1 s~(-1)变形时,在开裂表面观察到大量的韧窝,属于韧性开裂,在高应变速率10 s~(-1)变形时,开裂表面呈现脆性开裂特征。最后深入探讨了铸态Ti40合金的损伤机制和开裂原因,绘制了铸态Ti40合金的开裂原理图。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号