首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Fast and accurate read operation in 1.8-V 2-bit-per-cell virtual-ground flash memories requires techniques to substantially reduce the read margin loss due to the side-leakage current and the complementary-bit disturbance. The read margin loss caused by the combination effect of these two disturbance mechanisms is serious enough to eliminate the read margin window, which is already small when the power supply voltage is about 1.8 V and when a memory cell stores 2 bits. This paper introduces for the first time the sense current recovery technique to counteract the side-leakage current effect and the differential feedback cascoded bitline control technique to minimize the complementary-bit disturbance. A 1.8-V 256-Mb 2-bit-per-cell virtual-ground flash memory employing the two techniques has been integrated using 0.13-/spl mu/m CMOS technology. These two sensing techniques are essential for the memory to achieve 49-ns initial read access and 200-MHz internal burst read access. The die size is 52 mm/sup 2/ and the cell size is 0.121 /spl mu/m/sup 2/.  相似文献   

2.
This embedded-DRAM macro is designed as a DRAM cache for a future gigahertz microprocessor system based on a logic-based DRAM technology. The most notable feature of this macro is its ability to run synchronously with a gigahertz CPU clock in a fully pipelined fashion. It is designed to operate with a 1-GHz clock signal at 85°C, nominal process parameters, and a 10% degraded VDD. The design is fully pipelined and synchronous with 16 independent subarrays. With 1-kb wide I/0 and a 1-GHz clock, the maximum data rate becomes 1 Tb per second. The address access time is 3.7 ns, four cycles with a 1-GHz clock. The subarray cycle time is 12 ns  相似文献   

3.
A 256-Mb DRAM with a multidivided array structure has been developed and fabricated with 0.25-μm CMOS technology. It features 30-ns access time, 16-b I/Os, and a 35-mA operating current at a 60-ns cycle time. Three key circuit technologies were used in its design: a partial cell array activation scheme for reducing power-line voltage bounce and operating current, a selective pull-up data-line architecture to increase I/O width and reduce power dissipation, and a time-sharing refresh scheme to maintain the conventional refresh period without reducing operational margin. Memory cell size was 0.72 μm2. Use of the trench isolated cell transistor and the HSG cylindrical stacked capacitor cells helped reduce chip size to 333 mm2  相似文献   

4.
A high-speed 16-Mb DRAM chip with on-chip error-correcting code (ECC), which supports either 11/11 or 12/0 RAS/CAS addressing and operates on a 3.3- or 5-V power supply, is described. It can be packaged as a 2-Mb×8, 4-Mb×4, 8-Mb×2, or 16-Mb×1 DRAM, And is capable of operating in fast page mode, static column mode, or toggle mode. Speed and flexibility are achieved by a pipeline layout and on-chip SRAMs that buffer entire ECC words. The use of redundant word and bit lines in conjunction with the ECC produces a synergistic fault-tolerance effect  相似文献   

5.
A single 3.3-V 64-Mb dynamic RAM (DRAM) with a chip size of 233.8 mm2 has been fabricated using 0.4-μm CMOS technology with double-level metallization. The dual-cell-plate (DCP) cell structure is applied with a cell size of 1.7 μm2, and 30-fF cell capacitance has been achieved using an oxynitride layer (teff=5 nm) as the gate insulator. The RAM implements a new data-line architecture called the merged match-line test (MMT) to achieve faster access time and shorter test time with the least chip-area penalty. The MMT architecture makes it possible to get a RAS access time of 45 ns and reduces test time by 1/16000. A parallel MMT technique, which is an extended mode of MMT, leads to the further test-time reduction of 1/64000. Therefore, all 64 Mb are tested in only 1024 cycles, and the test time is only 150 μs with 150-ns cycle time  相似文献   

6.
The authors describe a DRAM with a battery-backup (BBU) mode, which allows automatic data retention with extremely reduced power consumption. The circuit techniques for reducing the refresh current and the back-bias-generator current are shown. The dissipated current required for data retention of 44 μA is achieved under typical conditions. This DRAM was fabricated with quad-poly and double-metal CMOS process technology. The memory array is divided into 4×32 subarrays. The finely divided array architecture is suitable for the fast access time and the multibit test mode  相似文献   

7.
An embedded DRAM macro with a self-adjustable timing control (STC) scheme, a negative edge transmission scheme (NET), and a power-down data retention (PDDR) mode is developed. A 13.98-mm/sup 2/ 16-Mb embedded DRAM macro is fabricated in 0.13 /spl mu/m logic-based embedded DRAM process. Co-salicide word lines and MIM capacitors are used for high-speed array operation. The delay timing variation of 36 % for an RC delay can be reduced to 3.8% by using the STC scheme. The NET scheme transfers array control signals to local array blocks with high accuracy. Thereby, the test chip achieves 1.2-V 312-MHz random cycle operation even in the low-power process. 73-/spl mu/W data retention power is realized by using the PDDR mode, which is 5% of conventional schemes.  相似文献   

8.
To verify three important circuit schemes suitable for DRAMs in mobile applications, a 1.8-V 128-Mb SDRAM was implemented with a 0.15-/spl mu/m technology. To achieve an ideal 33% efficiency, the double boosting pump uses two capacitor's series connection at pumping phase, while they are precharged in parallel. The hybrid folded current sense amplifier together with a novel replica inverter connection improved power and speed performances. Also, a dual-referenced adjustment scheme for a temperature sensor was proposed to allow a very high accuracy in tuning. Without loss in productivity, the implemented dual-referenced searching technique achieved tuning error of less than /spl plusmn/2.5/spl deg/C.  相似文献   

9.
A scalable single-chip 422P@ML MPEG-2 video, audio, and system encoder LSI for portable 422P@HL system is described. The encoder LSI is implemented using 0.13-μm embedded DRAM technology. It integrates 3-M logic gates and 64-Mb DRAM in an area of 99-mm2. The power consumption is suppressed to 0.7 W by adopting a low-power DRAM core. It performs real-time 422P@ML video encoding, audio encoding, and system encoding with no external DRAM. Furthermore, the encoder LSI realizes a 422P@HL video encoder with multichip configuration, due to its scalable architecture. This results in a PC-card size 422P@HL encoder for portable HDTV codec system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号