首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The herpes simplex virus type 1 (HSV-1) capsid is a T=16 icosahedral shell that forms in the nuclei of infected cells. Capsid assembly also occurs in vitro in reaction mixtures created from insect cell extracts containing recombinant baculovirus-expressed HSV-1 capsid proteins. During capsid formation, the major capsid protein, VP5, and the scaffolding protein, pre-VP22a, condense to form structures that are extended into procapsids by addition of the triplex proteins, VP19C and VP23. We investigated whether triplex proteins bind to the major capsid-scaffold protein complexes as separate polypeptides or as preformed triplexes. Assembly products from reactions lacking one triplex protein were immunoprecipitated and examined for the presence of the other. The results showed that neither triplex protein bound unless both were present, suggesting that interaction between VP19C and VP23 is required before either protein can participate in the assembly process. Sucrose density gradient analysis was employed to determine the sedimentation coefficients of VP19C, VP23, and VP19C-VP23 complexes. The results showed that the two proteins formed a complex with a sedimentation coefficient of 7.2S, a value that is consistent with formation of a VP19C-VP23(2) heterotrimer. Furthermore, VP23 was observed to have a sedimentation coefficient of 4.9S, suggesting that this protein exists as a dimer in solution. Deletion analysis of VP19C revealed two domains that may be required for attachment of the triplex to major capsid-scaffold protein complexes; none of the deletions disrupted interaction of VP19C with VP23. We propose that preformed triplexes (VP19C-VP23(2) heterotrimers) interact with major capsid-scaffold protein complexes during assembly of the HSV-1 capsid.  相似文献   

2.
Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.  相似文献   

3.
HSV-1 B capsids are composed of seven major proteins, designated VP5, VP19C, 21, 22a, VP23, VP24, and VP26. VP indicates that the capsid protein is also a component of the infectious virion. Capsid proteins 21, 22a, and VP24 are specified by a single open reading frame (UL26) that encodes 635 amino acids. An objective of the work in our laboratory is to identify and map interactions among and between capsid proteins. In the present studies we employed the yeast GAL4 two-hybrid system developed by Fields and his colleagues (Nature 240, 245-246 (1989)) for this purpose. DNA corresponding to the capsid open reading frames was derived as a PCR product and fused to sequences of the GAL4 activation and DNA binding domains. Using this system each of the capsid proteins has been tested for interactions with all of the other capsid proteins. Three interactions have been identified: a relatively strong self-interaction between 22a molecules (residues 307-635 of UL26), bimolecular interactions between 22a and VP5, and another between VP19C and VP23. The interactions were detected by the expression of beta-galactosidase enzyme activity, and yielded 289, 86, and 63 units of enzyme activity, respectively. For the 22a self-interaction, elimination of residues 611-635 resulted in an approximately twofold decrease in enzyme activity. The C-terminal 25 amino acids of 22a were also essential for the bimolecular interaction between 22a and VP5.  相似文献   

4.
VP26 is a 12-kDa capsid protein of herpes simplex virus 1. Although VP26 is dispensable for assembly, the native capsid (a T=16 icosahedron) contains 900 copies: six on each of the 150 hexons of VP5 (149 kDa) but none on the 12 VP5 pentons at its vertices. We have investigated this interaction by expressing VP26 in Escherichia coli and studying the properties of the purified protein in solution and its binding to capsids. Circular dichroism spectroscopy reveals that the conformation of purified VP26 consists mainly of beta-sheets (approximately 80%), with a small alpha-helical component (approximately 15%). Its state of association was determined by analytical ultracentrifugation to be a reversible monomer-dimer equilibrium, with a dissociation constant of approximately 2 x 10(-5) M. Bacterially expressed VP26 binds to capsids in the normal amount, as determined by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cryoelectron microscopy shows that the protein occupies its usual sites on hexons but does not bind to pentons, even when available in 100-fold molar excess. Quasi-equivalence requires that penton VP5 must differ in conformation from hexon VP5: our data show that in mature capsids, this difference is sufficiently pronounced to abrogate its ability to bind VP26.  相似文献   

5.
The ordered copolymerization of viral proteins to form the herpes simplex virus (HSV) capsid occurs within the nucleus of the infected cell and is a complex process involving the products of at least six viral genes. In common with capsid assembly in double-stranded DNA bacteriophages, HSV capsid assembly proceeds via the assembly of an outer capsid shell around an interior scaffold. This capsid intermediate matures through loss of the scaffold and packaging of the viral genomic DNA. The interior of the HSV capsid intermediate contains the viral protease and assembly protein which compose the scaffold. Proteolytic processing of these proteins is essential for and accompanies capsid maturation. The assembly protein (ICP35) is the primary component of the scaffold, and previous studies have demonstrated it to be capable of intermolecular association with itself and with the major capsid protein, VP5. We have defined structural elements within ICP35 which are responsible for intermolecular self-association and for interaction with VP5. Yeast (Saccharomyces cerevisiae) two-hybrid assays and far-Western studies with purified recombinant ICP35 mapped a core self-association domain between Ser165 and His219. Site-directed mutations in this domain implicate a putative coiled coil in ICP35 self-association. This coiled-coil motif is highly conserved within the assembly proteins of other alpha herpesviruses. In the two-hybrid assay the core self-association domain was sufficient to mediate stable self-association only in the presence of additional structural elements in either N- or C-terminal flanking regions. These regions also contain conserved sequences which exhibit a high propensity for alpha helicity and may contribute to self-association by forming additional short coiled coils. Our data supports a model in which ICP35 molecules have an extended conformation and associate in parallel orientation through homomeric coiled-coil interactions. In additional two-hybrid experiments we evaluated ICP35 mutants for association with VP5. We discovered that in addition to the C-terminal 25 amino acids of ICP35, previously shown to be required for VP5 binding, an additional upstream region was required. This region is between Ser165 and His234 and contains the core self-association domain. Site-directed mutations and construction of chimeric molecules in which the self-association domain of ICP35 was replaced by the GCN4 leucine zipper indicated that this region contributes to VP5 binding through mediating self-association of ICP35 and not through direct binding interactions. Our results suggest that self-association of ICP35 strongly promotes stable association with VP5 in vivo and are consistent with capsid formation proceeding via formation of stable subassemblies of ICP35 and VP5 which subsequently assemble into capsid intermediates in the nucleus.  相似文献   

6.
Coxsackievirus B4 (CBV-4) capsid protein VP0 and non-structural 2C protein were expressed and purified using a glutathione-S-transferase (GST) fusion protein expression system. We used a full-size CBV-4 cDNA as a template to amplify the genes by polymerase chain reaction (PCR). The genes were cloned into expression vector pGEX-2T and expressed as a fusion protein with GST. The GST-fusion proteins (GST-2C and GST-VP0) were purified in denatured and native forms and used to generate antibodies in rabbits. The antisera raised against GST-VP0 fusion protein recognized the corresponding structural proteins (VP0, VP2 and VP4) from purified CBV-4 preparations and infected cell lysates. In addition, cross-reactivity with CAV-9 and CBV-5 capsid proteins was observed. Anti-GST-2C antisera precipitated viral 2C protein in CBV-4-infected GMK cells, showing that the antibodies recognize the corresponding natural antigen.  相似文献   

7.
Three capsid proteins of SV40 (VP1, VP2, and VP3) were expressed in insect cells using recombinant baculoviruses. When the VP1 capsid protein was expressed alone or co-expressed with VP2 and VP3, virus-like particles (VLP) were produced. In the latter case, the minor capsid proteins, VP2 and VP3, were incorporated into the VLP. VLPs with and without VP2 and VP3, and the wild type SV40 virions were indistinguishable under electron microscope. The sedimentation coefficient, S20,w' obtained for the VLP consisting of VP1 alone (VP1-VLP) was 170 S, and that for the VLP consisting of all of the capsid proteins (VP1/2/3-VLP) was 174 S. Treatment of the VP1-VLP with a calcium ion chelating agent and a reducing agent caused dissociation of the VP1-VLP. The dissociated and purified VP1 proteins were identified as pentamers of VP1 based on the molecular weight determination by sedimentation equilibrium. The pentamers were shown to possess the ability to re-assemble into VLP which had the S20,w of 141S. The results are discussed in relation to the morphogenesis of SV40.  相似文献   

8.
This study demonstrates that cells expressing a dysfunctional analog of a herpes simplex virus (HSV) capsid protein inhibits HSV replication. Vero cell lines expressing HSV-1 capsid protein VP19c/beta-galactosidase fusion proteins were constructed and tested for their kinetics of expression, intracellular location, and ability to interfere with HSV replication. Two chimeric genes were constructed for these studies. The larger chimeric gene encodes the amino terminal 327 amino acids (aa) of VP19c fused to the carboxy terminal 1026 aa of beta-galactosidase, and the shorter chimeric gene encodes VP19c aa 1-30 and 302-327 fused to the carboxy-terminal 1026 aa of beta-galactosidase. Cell lines V32G-1 and V32G-2 containing the larger and the shorter chimeric genes, respectively, were isolated after cotransfection with plasmid pSV2-neo DNA, cell selection, and limiting-dilution cloning. The chimeric VP19c/beta-galactosidase genes resident in V32G-1 and V32G-2 cell lines were induced by early gene products of superinfecting wild-type HSV-1 and HSV-2, but were not constitutively expressed. The hybrid proteins expressed in infected V32G-1 and V32G-2 cells both colocalized with infected cell protein 8 (ICP8) into virus-replicative compartments in the cell nuclei. HSV-1 and HSV-2 growth in V32G-1 cells (which express the larger chimeric gene) was significantly reduced compared to growth in V32G-2 and control Vero cells. The data suggest that the larger VP19c/beta-galactosidase hybrid protein interferes with virus capsid assembly or morphogenesis in a competitive manner. Results also demonstrate that a small portion of VP19c containing the predicted endoplasmic reticulum signal sequence for this capsid protein (aa 1-30) promotes incorporation of the VP19c/beta-galactosidase fusion proteins into nuclear viral replication compartments.  相似文献   

9.
Human B19 parvovirus recombinant capsid proteins VP1 and VP2 were expressed in E. coli and purified. Recombinant proteins were used to detect a specific IgG immune response against VP1 and VP2 linear epitopes by immunoblot assay. A total of 222 serum samples from 218 apparently immunocompetent subjects with different clinical conditions and laboratory evaluations with regards to B19 infection were analyzed. The sera had previously been tested for B19 DNA and for specific IgM and IgG against VP2 conformational antigens by ELISA assay. The data show that, during the active or very recent phase of infection, IgG anti-VP1 linear epitopes appear in concomitance and with the same frequency as IgG anti-VP2 conformational antigens. IgG against conformational VP2 antigens and against linear VP1 epitopes seem to persist for months or years in the majority of individuals. IgG against VP2 linear epitopes are generally present during the active or very recent phase of infection and during the convalescent phase, while they are present only in about 20% of subjects with signs of a past B19 infection.  相似文献   

10.
Capsid assembly is the final event of virus replication, and its understanding is pivotal for the design of empty capsid-based recombinant vaccines and drug delivery systems. Although the capsid structure of several members of the picornavirus family has been elucidated, little is known about the structural elements governing the assembly process that is tightly associated with proteolytic processing of the viral polyprotein. Among the picornaviruses, hepatitis A virus (HAV) is unique in that it contains VP1-2A as a structural component and the small structural protein VP4, which argues for an assembly pathway different from that proposed for other picornaviruses. Using a recombinant system we show here that proteolytic processing of the HAV capsid proteins' precursor P1-2A is independent of the terminal domains 2A and VP4 of the substrate. However, both terminal domains play distinct roles in the assembly of viral particles. 2A as part of P1-2A is a primary signal for the assembly of pentameric structures which only further aggregate to empty viral capsids when VP4 is present as the N terminus of the precursor. Particle formation in the hepatovirus genus is thus regulated by two intrinsic signals that are distinct from those described for other picornaviruses.  相似文献   

11.
Adeno-associated virus type 2 (AAV-2) gene expression is tightly controlled by functions of the helper virus as well as by the products of its own viral rep gene. Double-immunofluorescence studies of Rep and VP protein expression in cells coinfected with AAV-2 and adenovirus type 2 showed that a large proportion of these cells expressed Rep78 and Rep52 but no capsid proteins. The percentage of Rep78/Rep52- and capsid protein-positive cells was strongly influenced by the relative ratio of AAV-2 to adenovirus type 2. In contrast, nearly all cells positive for Rep68/Rep40 were also positive for capsid protein expression. Examination of p40 promoter transactivation by individual Rep proteins in the presence of adenovirus, however, showed that both Rep78 and Rep68 efficiently stimulated p40 mRNA accumulation and capsid protein expression. This strong transactivation was reliant upon the presence of terminal repeats and correlated with template amplification. In replication-deficient expression constructs, transactivation was observed only with Rep68 and was dependent on the linear Rep binding site within the left terminal repeat which was detected in the presence of high adenovirus concentrations. In the absence of any terminal repeat sequences, Rep68 expression again led to a minor transactivation of capsid protein expression which was detectable only at low adenovirus concentrations. This low level of transactivation of capsid protein expression by Rep proteins in the absence of terminal repeats resulted in a lower efficiency of capsid assembly. The data show a dominant influence of adenovirus type 2 functions on AAV-2 gene expression, a requirement for terminal repeats for strong transactivation of the p40 promoter by Rep proteins, and differential influences of Rep78 and Rep68 on AAV-2 promoters. Implications for the production of recombinant AAV-2 vectors are discussed.  相似文献   

12.
Recombinant interstitial collagenase (rMMP-1) forms insoluble inclusion bodies when over-expressed in Escherichia coli. We surveyed conditions for renaturation of purified rMMP-1 in 6 M guandine hydrochloride (GdnHCl) and found that optimal folding occurred when the denatured protein was diluted at 4 degrees C in approximately 2 M guanidine HCl, 20% glycerol, 2.5 mM reduced and oxidized glutathione, and 5 mM CaCl2, followed by buffer exchange to remove denaturant and thiols. The circular dichroism spectrum and catalytic constants of the refolded enzyme were similar to those of native MMP-1. The propeptide, which comprises approximately 20% of the mass of proMMP-1, was not required for folding to a functional enzyme. Size exclusion chromatography and spectroscopic measurements at intermediate [GdnHCl] revealed two intermediate folding states. The first, observed at 1 M GdnHCl, had a slightly larger Stokes' radius than the folded protein. CD and fluorescence analysis showed that it contained ordered tryptophan residues with a higher quantum yield than the fully folded state. The second intermediate, which appeared between 2 and 4 M GdnHCl, exhibited properties consistent with the molten globule, including secondary structure, lack of ordered tryptophan, exposed hydrophobic binding sites, and a Stokes' radius between that of the folded and unfolded states.  相似文献   

13.
The tailspike protein (TSP) of Salmonella typhimurium P22 bacteriophage is a multifunctional homotrimer, 6 copies of which are non-covalently attached to the capsid to form the virion tail in the last reaction of phage assembly. An antigenic peptide of foot-and-mouth disease virus (FMDV), aa 134-156 of protein VP1, has been joined to the carboxy terminus of TSP, and produced as a fusion protein in Escherichia coli directed by the trp promoter. The resulting fusion protein is soluble, stable, non-toxic, and can be easily purified by standard procedures. Moreover, both the endorhamnosidase and capsid assembly activities of the TSP are conserved, permitting the fusion protein to reconstitute infectious viruses by in vitro association with tailless particles. In both free TSP and P22 chimeric virions, the foreign peptide is solvent-exposed and highly antigenic, indicating that P22 TSP could be an appropriate carrier protein for multimeric peptide display.  相似文献   

14.
We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.  相似文献   

15.
16.
A microdialysis flow cell has been developed for time-resolved Raman spectroscopy of biological macromolecules and their assemblies. The flow cell permits collection of Raman spectra concurrent with the efflux of small solute molecules into a solution of macromolecules and facilitates real-time spectroscopic detection of structural transitions induced by the effluent. Additionally, the flow cell is well suited to the investigation of hydrogen-isotope exchange phenomena that can be exploited as dynamic probes of viral protein folding and solvent accessibility along the assembly pathway. Here, we describe the application of the Raman dynamic probe to the maturation of the icosahedral capsid of bacteriophage P22, a double-stranded DNA virus. The P22 virion is constructed from a capsid precursor (procapsid) consisting of 420 coat subunits (gp5) in an outer shell and a few hundred scaffolding subunits (gp8) within. Capsid maturation involves expulsion of scaffolding subunits coupled with shell expansion at the time of DNA packaging. Raman static and dynamic probes reveal that the scaffolding subunit is highly alpha-helical and highly thermolabile, and lacks a typical hydrophobic core. When bound within the procapsid, the alpha-helical fold of gp8 is thermostabilized; however, this stabilization confers no apparent protection against peptide NH-->ND exchange. A molten globule model is proposed for the native scaffolding subunit that functions in procapsid assembly. Accompanying capsid expansion, a small conformational change (alpha-helix-->beta-strand) is also observed in the coat subunit. Domain movement mediated by hinge bending is proposed as the mechanism of capsid expansion. On the basis of these results, a molecular model is proposed for assembly of the P22 procapsid.  相似文献   

17.
Canine parvovirus capsids are composed of 60 copies of VP2 and 6 to 10 copies of VPl. To locate essential sites of interaction between VP2 monomers, we have analyzed the effects of a number of VP2 deletion mutants representing the amino terminus and the four major loops of the surface, using as an assay the formation of virus-like particles (VLPs) expressed by recombinant baculoviruses. For the amino terminus we constructed three mutants with progressively larger deletions, i.e., 9, 14, and 24 amino acids. Deletions of 9 and 14 amino acids did not affect the morphology and assembly capabilities of the mutants. However, the mutant with the 24-amino-acid deletion did not show hemagglutination properties or correct VLP morphology, stressing again the relevance of the RNER domain in canine parvovirus functionality. Three of the four mutants with deletions in the loops failed to make correct VLPs, indicating that these regions are essential for correct capsid assembly and morphology. Only the mutant with the deletion in loop 2 was able to assemble in regular VLPs, suggesting that this loop has little or no effect in capsid morphogenesis. Further research has demonstrated that this region can tolerate the insertion of foreign epitopes that are correctly exposed in the surface of the capsid. This result opens the door to the use of these VLPs for antigen delivery.  相似文献   

18.
The chaperone-like alpha-crystallin prevents aggregation of several proteins by interacting with their non-native states. Alpha-Lactalbumin adopts different non-native states under different experimental conditions. We have investigated the interaction of alpha-crystallin with three non-identical non-native states, using fluorescence, circular dichroism, and gel filtration chromatography. The compact molten globule state of apo-alpha-lactalbumin in tris buffer does not interact with alpha-crystallin. The expanded, flexible molten globule-like state of reduced apo-alpha-lactalbumin (formed at pH 7.2) also does not interact with alpha-crystallin. Only the aggregation-prone non-native state of reduced apo-alpha-lactalbumin formed at pH 6.0 interacts with alpha-crystallin to form a stable complex. The alpha-crystallin bound reduced apo-alpha-lactalbumin exhibits properties similar to those of a molten globule. Our results show that alpha-crystallin interacts only with the aggregation prone molten globule state of reduced apo-alpha-lactalbumin but not with the other non-aggregating molten globule states of the protein.  相似文献   

19.
The equilibrium unfolding and the kinetics of unfolding and refolding of equine lysozyme, a Ca2+-binding protein, were studied by means of circular dichroism spectra in the far and near-ultraviolet regions. The transition curves of the guanidine hydrochloride-induced unfolding measured at 230 nm and 292.5 nm, and for the apo and holo forms of the protein have shown that the unfolding is well represented by a three-state mechanism in which the molten globule state is populated as a stable intermediate. The molten globule state of this protein is more stable and more native-like than that of alpha-lactalbumin, a homologous protein of equine lysozyme. The kinetic unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by stopped-flow circular dichroism. The observed unfolding and refolding curves both agreed well with a single-exponential function. However, in the kinetic refolding reactions below 3 M guanidine hydrochloride, a burst-phase change in the circular dichroism was present, and the burst-phase intermediate in the kinetic refolding is shown to be identical with the molten globule state observed in the equilibrium unfolding. Under a strongly native condition, virtually all the molecules of equine lysozyme transform the structure from the unfolded state into the molten globule, and the subsequent refolding takes place from the molten globule state. The transition state of folding, which may exist between the molten globule and the native states, was characterized by investigating the guanidine hydrochloride concentration-dependence of the rate constants of refolding and unfolding. More than 80% of the hydrophobic surface of the protein is buried in the transition state, so that it is much closer to the native state than to the molten globule in which only 36% of the surface is buried in the interior of the molecule. It is concluded that all the present results are best explained by a sequential model of protein folding, in which the molten globule state is an obligatory folding intermediate on the pathway of folding.  相似文献   

20.
The herpes simplex virus type 1 (HSV-1) UL35 open reading frame (ORF) encodes a 12-kDa capsid protein designated VP26. VP26 is located on the outer surface of the capsid specifically on the tips of the hexons that constitute the capsid shell. The bioluminescent jellyfish (Aequorea victoria) green fluorescent protein (GFP) was fused in frame with the UL35 ORF to generate a VP26-GFP fusion protein. This fusion protein was fluorescent and localized to distinct regions within the nuclei of transfected cells following infection with wild-type virus. The VP26-GFP marker was introduced into the HSV-1 (KOS) genome resulting in recombinant plaques that were fluorescent. A virus, designated K26GFP, was isolated and purified and was shown to grow as well as the wild-type virus in cell culture. An analysis of the intranuclear capsids formed in K26GFP-infected cells revealed that the fusion protein was incorporated into A, B, and C capsids. Furthermore, the fusion protein incorporated into the virion particle was fluorescent as judged by fluorescence-activated cell sorter (FACS) analysis of infected cells in the absence of de novo protein synthesis. Cells infected with K26GFP exhibited a punctate nuclear fluorescence at early times in the replication cycle. At later times during infection a generalized cytoplasmic and nuclear fluorescence, including fluorescence at the cell membranes, was observed, confirming visually that the fusion protein was incorporated into intranuclear capsids and mature virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号