首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports an assessment of the performance of concrete based on a calcium sulfoaluminate–anhydrite–fly ash cement combination. Concretes were prepared at three different w/c ratios and the properties were compared to those of Portland cement and blast-furnace cement concretes. The assessment involved determination of mechanical and durability properties. The results suggest that an advantageous synergistic effect between and ettringite and fly ash (Ioannou et al., 2014) was reflected in the concrete’s low water absorption rates, high sulfate resistance, and low chloride diffusion coefficients. However, carbonation depths, considering the dense ettringite-rich microstructure developed, were higher than those observed in Portland cement concretes at a given w/c ratio. It was concluded that the amount of alkali hydroxides present in the pore solution is as important factor as the w/c ratio when performance of this type of concrete is addressed.  相似文献   

2.
The effects of the use of Class F fly ash as a cement addition on the hardened properties of recycled aggregate concrete were determined. In this study, four series of concrete mixtures were prepared with water-to-cement (w/c) ratios of 0.55, 0.50, 0.45 and 0.40. The recycled aggregate was used as 0%, 20%, 50% and 100% replacements of coarse natural aggregate. Furthermore, fly ash was employed as 0% and 25% addition of cement. Although the use of recycled aggregate had a negative effect on the mechanical properties of concrete, it was found that the addition of fly ash was able to mitigate this detrimental effect. Also, the addition of fly ash reduced the drying shrinkage and enhanced the resistance to chloride ion penetration of concrete prepared with recycled aggregate. Moreover, it was found that the drying shrinkage and chloride ion penetration decreased as the compressive strength increased. Compared with the results of our previous study, the present study has quantified the advantages of using fly ash as an additional cementitious material in recycled aggregate concrete over the use of fly use as a replacement of cement.  相似文献   

3.
Recycled concrete is a material with the potential to create a sustainable construction industry. However, recycled concrete presents heterogeneous properties, thereby reducing its applications for some structural purposes and enhancing its application in pavements. This paper provides an insight into a solution in the deformation control for recycled concrete by adding supplementary cementitious materials fly ash and blast furnace slag. Results of this study indicated that the 50% fly ash replacement of Portland cement increased the rupture modulus of the recycled concrete. Conversely, a mixture with over 50% cement replacement by either fly ash or slag or a combination of both exhibited detrimental effect on the compressive strength, rupture modulus, and drying shrinkage. The combined analysis of environmental impacts and mechanical properties of recycled concrete demonstrated the possibility of optimizing the selection of recycled concrete because the best scenario in this study was obtained with the concrete mixture M8 (50% of fly ash+ 100% recycled coarse aggregate).  相似文献   

4.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement.  相似文献   

5.
This paper describes research on the transport properties of high-volume fly ash roller compacted concrete (RCC). The mixes were developed through incorporating 50–260 kg/m3 cement and high volumes of fly ash ranging from 40% to 85% by mass of the total cementitious material. The concretes were investigated for permeability, absorption, sorption and chloride diffusion. The study showed that RCCs of moderate cement and moderate fly ash contents had lower values of permeability, absorption, sorption and chloride diffusivity.  相似文献   

6.
采用不同等级粉煤灰按质量比为0%、10%、20%、30%取代水泥,配制而成的C30再生混凝土。通过实验,分别测定了再生混凝土的强度、和易性,最终得出不同等级粉煤灰在不同取代率情况下对再生混凝土强度及和易性的影响规律,为粉煤灰在再生混凝土中的应用提供必要的理论依据。  相似文献   

7.
Abstract

Three different ways of using fly ash, namely, partial replacement of cement, or sand, or both cement and sand in the cement mortar, were studied in this investigation. The replacement varied from 10 percent to 60 percent by weight. The effects of design parameters such as water‐cement ratio and curing temperature on the replacements were studied. In this paper, strategies of using fly ash in concrete construction were also proposed in order to conserve resources.  相似文献   

8.
The use of fly ash as a mineral admixture in the manufacture of concrete has received considerable attention in recent years. For this reason, several experimental studies are carried out by using fly ash at different proportions replacement of cement in concrete. In the present study, the models are developed in genetic programming for predicting the compressive strength values of cube (100 and 150 mm) and cylinder (100 × 200 and 150 × 300 mm) concrete containing fly ash at different proportions. The experimental data of different mixtures are obtained by searching 36 different literatures to predict these models. In the set of the models, the age of specimen, cement, water, sand, aggregate, superplasticizers, fly ash and CaO are entered as input parameters, while the compressive strength values of concrete containing fly ash are used as output parameter. The training, testing and validation set results of the explicit formulations obtained by the genetic programming models show that artificial intelligent methods have strong potential and can be applied for the prediction of the compressive strength of concrete containing fly ash with different specimen size and shape.  相似文献   

9.
Thaumasite formation in concrete and mortars containing fly ash   总被引:7,自引:0,他引:7  
Due to recent reports on deterioration of concrete structures, the thaumasite form of sulfate attack has become a subject of study and close investigation. This paper investigates the formation of thaumasite in concrete and mortars containing fly ash. The results show that thaumasite formation can occur within 84 days of exposure to sulfate solutions. High volumes of fly ash can limit or promote thaumasite formation depending on the type of cement used. Thaumasite and ettringite were found among the deterioration products. However, the thaumasite formation in the specimen prepared from sulfate resisting Portland cement was not accompanied by deterioration, except by 50% fly ash addition. The mixtures of Portland limestone cement with 40% fly ash exhibited a very limited thaumasite formation while the mixtures with 50% had no thaumasite at all. It is concluded that thaumasite can also be formed in mixtures incorporating fly ash.  相似文献   

10.
Eighty percent of fly ash produced by Greek Public Power Corporation (PPC) is of a high-calcium variety. It has a low insoluble residue and a high content in CaO as well as in SO3. It also shows self-cementing properties. About 20% of it is used by cement companies in blended type cement production.

In this paper mechanical strengths and some other characteristics concerning blended cement and concrete made with it are presented. Special difficulties anticipated in using such a marginal fly ash in cement are also mentioned.  相似文献   


11.
A detailed investigation carried out to ascertain the durability characteristics of fine glass powder modified concretes is reported in this paper. Tests were designed to facilitate comparisons between concretes modified with either glass powder or fly ash at the same cement replacement level. The optimal replacement level of cement by glass powder is determined from strength and hydration tests as 10%. The later age compressive strengths of glass powder and fly ash modified concretes are seen to differ by only 5%. The durability characteristics are ascertained using tests for rapid chloride permeability, alkali–silica reactivity, and moisture transport parameters. The chloride penetrability values indicate some amount of pore refinement. The potential of glass powder to reduce the expansion due to alkali–silica reaction is established from tests conducted in accordance with ASTM C 1260, but fly ash is found to perform better at similar replacement levels. Glass powder–fly ash blends that make up a 20% cement replacement level are found to be as efficient as 20% fly ash in reducing expansion. The control concrete is seen to exhibit the lowest overall moisture intake after 14 days of curing, and fly ash concrete the highest, with the glass powder concrete in between. The trend is reversed at later ages, demonstrating that both the replacement materials contribute to improved durability characteristics. The sorptivity and moisture diffusion coefficient values calculated from the moisture intake-time data also demonstrate a similar trend. These studies show that fine glass powder has the potential to improve the durability of concretes.  相似文献   

12.
Cement-stabilized fly ash base courses   总被引:4,自引:0,他引:4  
Various demonstration projects have been carried out in The Netherlands with cement-stabilized fly ash as a base course. Usually these courses were made of 100 parts by mass of fly ash; 10 parts by mass of cement; 20 to 30 parts by mass of water. However, the projects were not quite successful since delamination was observed, and long-term strength, after a period of six years of performance, appears to be much smaller than expected on the basis of preliminary laboratory research. A model for pozzolanic reaction of fly ash recently developed by Fraay and Bijen pointed out that the reactivity of fly ash is influenced greatly by the pH value of the pore water. A pH of at least 13 is required to initiate fly ash pozzolanic reaction in a Portland cement environment. Pore water extraction measurements showed that the pH of cement-stabilized fly ash often has a substantially lower value. In this high-volume fly ash application the effect of the acidity of fly ash is much greater than in ordinary concrete with cement replaced by fly ash up to 30%. By addition of NaOH and/or sodium silicate to the mixing water, the pH value can be increased above the ‘threshold’ value.

Tests were carried out with different types of class-F fly ashes and with different NaOH concentrations in the mixing water. The results show an increase in compressive strength of up to 300% depending on the type of fly ash, and a substantial decrease in the rate of water absorption.  相似文献   


13.
Hydration of high-volume fly ash cement pastes   总被引:20,自引:0,他引:20  
The hydration processes of high-volume fly ash cement paste were investigated by examining the non-evaporable water content, the CH content, the pH of pore solution and the fraction of reacted fly ash, curing at either 20°C or elevated temperatures after an initial curing at 20°C. The replacement percentage levels of fly ash were 40%, 50% and 60% by weight, respectively. The results revealed that the non-evaporable water content in high-volume fly ash cement pastes does not develop as plain cement pastes does, so it may be improper to apply the non-evaporable water content to evaluate the hydration process in high-volume fly ash cement matrix. The reduction in CH content increases with the progressing of hydration process and varies linearly with the logarithm of curing age. The addition of 3.0% of Na2SO4 could accelerate the pozzolanic reaction of fly ash at early ages. At 20°C, the pH of pore solution of high-volume fly ash cement paste was reduced to a great extent at early ages and it continued to decline at later ages due to the inclusion of large amount of fly ashes. At elevated temperatures, however, this trend was not found. The fraction of reacted fly ash directly reflects the pozzolanic reactivity of fly ash both at normal and elevated temperatures. There is some inherent correlation between the reduction in CH content, the pH of pore solution and the fraction of reacted fly ash. For specified matrix, the consumption of CH and the pH of pore solutions change linearly with the increase of the fraction of reacted fly ash.  相似文献   

14.
Shrinkage behavior of the structural foam lightweight concrete with density of 1600 kg/m3 was investigated. Owing to high drying shrinkage of the lightweight concrete, glycol compounds were used in the concrete mixture to study their effect on shrinkage behavior. Propylene glycol (PG), triethylene glycol (TEG) and dipropylene glycol tert-butyl ether (DPTE) were selected for testing of drying shrinkage of the lightweight concrete. Partial replacement of cement and sand with fly ash was also used to reduce the shrinkage. Results indicated that PG, TEG and DPTE were effective in reducing the shrinkage of lightweight concrete through reduction of surface tension of water. However, DPTE significantly reduced the surface tension and caused the foam instability and early stiffening of mixture. The partial replacement of cement and sand with fly ash could also reduce the shrinkage of the lightweight concrete. In this case, the compressive strength was also enhanced owing to the additional pozzolanic reaction.  相似文献   

15.
The present study describes the behaviour of concrete as well as fly ash concrete when subjected to varying number of high temperature heating cycles. A Concrete mix (1:2.37:2.98) with 340 kg/m3 cement and w/cm ratio 0.45 was prepared. Cement was replaced by varying percentages (0%, 20%, 40%, 50% and 60%) of fly ash by weight of cement. The concrete was subjected to a constant temperature of 200°C for 7, 14, 21 and 28 heating cycles. One heating cycle corresponds to 8 h heating and subsequent cooling in 24 h. Subsequently the effect of temperature on the properties of the concrete was investigated and compared with that of the properties of unheated concrete. The compressive strength of plain as well as fly ash concrete increased when it was subjected to thermal cyclic loads. Moreover, the compressive strength increased with an increase in number of heating cycles. Thermal conductivity of concrete was found to decrease with an increase in the fly ash content.  相似文献   

16.
Various activation techniques, such as physical, thermal and chemical were adopted. By adopting these methods of activation, hydration of fly ash blended cement was accelerated and thereby improved the corrosion-resistance and strength of concrete. Concrete specimens prepared with 10%, 20%, 30% and 40% of activated fly ash replacement levels were evaluated for their compressive strengths at 7, 14, 28 and 90 days and the results were compared with ordinary Portland cement concrete (without fly ash). Corrosion-resistance of fly ash cement concrete was studied by using anodic polarization technique. Electrical resistivity and ultrasonic pulse velocity measurements were also carried out to understand the quality of concrete. The final evaluation was done by qualitative and quantitative estimation of corrosion for different systems. All the studies confirmed that upto a critical level of 20–30% replacement; activated fly ash cement improved both the corrosion-resistance and strength of concrete. Chemical activation of fly ash yielded better results than the other methods of activation investigated in this study.  相似文献   

17.
The weak transition zone between aggregate and cement paste controls many important properties of concrete. A number of studies dealing with interfacial zone are available in the literature for normal concrete and concrete containing silica fume. High-volume fly ash concrete for structural applications was developed at CANMET in the 1980s, but to date there has been no information available for interfacial zone in high-volume fly ash concrete.In this paper, the orientation index and mean size of Ca(OH)2 crystals in the aggregate-paste interfacial zone were determined by the X-ray diffractometer. The bond strength between the aggregate and paste was also investigated. It was found that, at the age of 28 days, there was no obvious transition zone between the aggregate and cement paste incorporating high volumes of fly ash. The higher the paste strength, the higher is the bond strength.  相似文献   

18.
The leaching of major and trace elements from concrete made with Portland cement, fly ash and GGBS (ground granulated blast-furnace slag) was studied using pH static availability and tank leach tests. The release of substances during the tank leach test occurs by surface dissolution of phases at the concrete surface and diffusion inside the concrete, the amounts depending on the phases controlling solubility and concrete porosity. Alkali release is controlled by diffusion and is thus reduced by lower water/binder ratios and the replacement of Portland cement by fly ash. Ca, Al and S release occurs mainly by surface dissolution of portlandite and AFt/AFm, respectively. The release of V is determined by surface dissolution of V substituted ettringite and/or calcium vanadate. Although fly ash can increase the total V content of concrete, enhancing release, only 2% of the total V content in concrete was available for release.  相似文献   

19.
叶勤民  虞冕  陈胡星 《材料导报》2011,(Z2):465-467,477
在外掺轻烧氧化镁的水泥净浆中掺入粉煤灰,通过膨胀率变化分析粉煤灰对氧化镁膨胀的影响及其机理。粉煤灰在早期促进了氧化镁膨胀,到后期却抑制了膨胀,而且随着粉煤灰掺量的增加上述作用增强。为了更好地分析膨胀机理,结合膨胀场理论和KELVIN粘弹性模型深入讨论了粉煤灰对膨胀源所处环境的影响,并从水泥石的结构和力学性能揭示了粉煤灰对氧化镁膨胀的影响机制。  相似文献   

20.
The objectives of this investigation were to study the effect of W/B ratios and fly ash finenesses on chloride diffusion coefficient (Dc) of concrete under marine environment. Original and classified fly ashes were used as a partial replacement of Portland cement type I at 0%, 15%, 25%, 35%, and 50% by weight of binder. Water to binder ratios (W/B) were varied as 0.45, 0.55, and 0.65. Concrete cube specimens of 200 mm were cast and removed from the molds after casting 1 day and then cured in fresh water for 27 days. After that, the specimens were placed to the tidal zone of marine environment in the Gulf of Thailand. Subsequently, the specimens were tested for chloride penetration profile after being exposed to the tidal zone for 2, 3, 4, and 5 years. The regression analysis of investigated data was carried out and Fick’s second law of diffusion was applied to calculate the chloride diffusion coefficient (Dc) and chloride concentration at concrete surface (Co) based on one-dimensional analysis. The results showed that Dc of all concrete mixtures decreased with an exposure time and the decrease of W/B ratio resulted in the decrease of Dc. When the W/B ratio of concrete was reduced, the decrease of Dc in cement concrete was higher than that of the fly ash concrete. The use of fly ash with high fineness clearly reduced the rate of chloride ingress into concrete. In addition, fly ash with high fineness has more effective on reducing of Dc in concrete with higher W/B ratio than that with lower W/B ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号