共查询到18条相似文献,搜索用时 78 毫秒
1.
一种启发式知识约简算法 总被引:3,自引:0,他引:3
属性约简是Rough集理论中的核心问题之一,找出所有的约简或最小约简是一个NP难题.本文证明了正区域和边界域的一些性质,指出在考虑正区域作为启发信息的同时,还应该考虑在不一致决策表中边界域对约简的影响,综合这两种信息,提出了不一致决策表约简的启发信息.并在此基础上,设计了不一致决策表的启发式约简算法.实验证明,在多数情况下,该算法能够得到决策表的最小或次优约简. 相似文献
2.
3.
一种基于Rough集理论的属性约简启发式算法 总被引:9,自引:1,他引:9
属性约简是知识发现中的关键问题之一.为了能够有效地获取决策表中属性的最小相对约简,在Rough集理论的基础上构造了一个新的算子,将信息论角度定义的属性的重要性作为启发式信息,来描述在决策表中条件属性所提供的知识对决策属性的影响;并采用宽度优先搜索策略,提出了一种新的属性约简启发式算法.以原始条件属性集为起点并结合算子,通过向属性核的递减式逼近,得到属性的最小相对约简.实例分析表明,该算法能有效地对决策表属性进行约简. 相似文献
4.
在基于Rough集理论的知识发现过程中,减小属性约简复杂度问题是重要研究内容之一。该文分析了基于遗传算法的约简算法,提出了一种在优化初始群体基础上提高算法性能的遗传约简算法。 相似文献
5.
采取一边计算构成等价类的相对分明函数的合取范式,一边通过产生的合取范式与已有的规则集计算新的规则集,得到一种改进的规则学习算法,由于该方法不用生成分明矩阵的中间环节,这样便节省了空间和时间,提高了运行效率,实验结果表明,该算法在效率上较现有算法有明显提高. 相似文献
6.
一种新的启发式知识约简算法 总被引:3,自引:0,他引:3
知识约简是Rough Set理论研究的重要内容.通过分辨矩阵定义了简化分辨函数,然后针对此分辨函数构造了两种操作以及定义了覆盖、最小覆盖等概念,并基于这种操作、概念和相关原理将决策系统的约简问题转化为寻求简化分辨函数最小覆盖的问题;面向最小属性约简定义了基于简化分辨函数的属性重要度,并以此为启发信息,结合已导出的有关最小覆盖的定理构造了一种新的知识约简算法--算法SDFAR.文中,在理论上详细证明了提出算法的完备性并给出了算法的复杂性分析,说明其高效性,对寻找最小约简是相对有效的,这在最后的实验中也得到了验证. 相似文献
7.
约简数据集的支持向量分类机算法 总被引:1,自引:0,他引:1
支持向量机是当前智能计算研究领域的热点之一。基于支持向量机的大样本学习一直是一个非常具有挑战性的研究课题。对于分类问题给出一种基于相似度的约简数据集的方法。给出的新算法大大地减少了训练样本的数目和所求解的支持向量机算法的规模,有效地加快了支持向量机算法的训练速度。仿真实验表明:新算法较为简单、实用。 相似文献
8.
经典Rough集理论是基于完备信息系统的。然而在实际应用中,由于数据存取或数据处理方面的原因,决策表经常是不完备的,即存在缺值。为了处理不完备信息系统,Kryszkiewicz提出了基于容差关系的Rough集模型。在该模型下进行知识约简时,现有的算法一般都采用构造区分矩阵和相应区分函数的方法。该方法虽然可以求得所有约简,然而业己证明这是一个NP-hard问题,因此实践中更为可行的方法是利用启发式搜索算法求出最优或次最优约简。在文中提出属性的重要性定义,并以此作为启发式信息,设计一种完备的知识约简算法。 相似文献
9.
利用覆盖算法对数据进行处理,得到论域U的一个划分,定义一种基于覆盖的条件信息熵,由新的条件信息熵定义新的属性重要性,并证明了对于一致决策表,它与代数定义下的重要性是等价的。以新的属性重要性为启发信息设计约简算法,并给出计算新的条件信息熵的算法。实验结果表明该约简算法能快速搜索到最优或次优约简。 相似文献
10.
一种基于Rough集的属性值约简算法 总被引:7,自引:0,他引:7
文章将Rough集理论应用于不同类型的决策表(一致决策表和不一致决策表)的约简,给出了广义决策、决策规则的一致程度、属性值重要性等定义,在此基础上提出了一种基于Rough集的属性值约简算法。该算法不仅能得到更为简洁的决策规则,而且能保持决策规则的一致程度不变。实例分析表明该算法是可行的。 相似文献
11.
约简的一种启发式算法 总被引:4,自引:0,他引:4
本文揭示了约简在数量上的蕴涵的一个重要性质,由此给出又一种属性重要性的定义及相应的启发式算法,并对算法进行了详细的分析。文章最后还类似地讨论了相对约简。 相似文献
12.
基于样本选择的启发式属性约简方法研究 总被引:1,自引:0,他引:1
属性约简是粗糙集理论的核心研究内容之一。借鉴于贪心策略的启发式算法是求解约简的一种有效技术手段。传统的启发式算法使用了决策系统中的所有样本,但实际上每个样本对约简的贡献程度是不同的,这在一定程度上增加了启发式算法的时间消耗。为解决这一问题,提出了一种基于样本选择的启发式算法,该算法主要分为3步:首先从样本集中挑选出重要的样本;然后利用选取出的样本构建新的决策系统;最后利用启发式算法求解约简。实验结果表明,新算法能够有效地减少约简的求解时间。 相似文献
13.
14.
15.
16.
针对目前基于差别矩阵的属性约简算法需要耗费大量的时间和空间,粗糙集中求属性核和属性约简更新效率低以及有关属性约简的增量式更新算法目前还比较少等问题,提出了一种基于改进差别矩阵的属性约简增量式更新算法.该算法在更新差别矩阵时,仅须插入某一行及某一列,或删除某一行并修改相应的列,因而可有效地提高核和属性约简的更新效率.然后在分析新增对象x与原决策系统对象的关系的基础上,给出了属性约简增量更新算法.理论与实验分析表明,提出的算法提高了属性约简的更新效率,明显降低了时间和空间复杂度. 相似文献
17.
18.
基于决策规则的条件属性支持度和规则支持度,结合Apriori算法思想,本文提出了一种利用决策规则支持度对粗糙集中决策表进行值约简的算法。实例表明该算法可以有效地对决策表进行值约简。 相似文献