首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we have investigated three different surface passivation technologies: classical thermal oxidation (CTO), rapid thermal oxidation (RTO) and silicon nitride by plasma enhanced chemical vapor deposition (PECVD). Eight different passivation properties including SiO2/SiNx stacks on phosphorus diffused (100 and 40 Ω/Sq) and non-diffused 1 Ω cm FZ silicon were compared. Both types of SiO2 layers, CTO and RTO, yield a higher effective lifetime on the emitter surface than on the non-diffused surface. For the SiNx layers the situation is reverted. On the other hand, with SiO2/SiNx stacks high lifetimes are obtained not only non-diffused surface but also on the diffused surface. Thus, we have chosen the RTO/SiNx stack layers as front and rear surface passivation in solar cells, which passivate relatively good on the surface and has very low-weighted reflection. On planar cells passivated with RTO/SiNx a very high Voc of 675.6 mV and a Jsc of 35.1 mA/cm2 was achieved. Compared to a planar cell using CTO the efficiency of RTO/SiNx cell is 0.8% higher (4.5% relative). It can be concluded that the RTO/SiNx layers are the optimal passivation for the front and rear surface. On the other hand, for textured cells, the Jsc and FF of RTO/SiNx cells are lower than those of CTO cells. The main reasons of these Jsc and FF losses were also discussed systematically.  相似文献   

2.
The effect of the growth temperature and Mg/(Mg+Zn) molar flow rate ratio of metal organic sources on the crystalline structure of Zn1−xMgxO (ZMO) films is investigated in thin films prepared by metal organic chemical vapor deposition (MOCVD) process on fused silica in order to obtain the wide-bandgap ZMO films with single wurtzite structure, which is very important to achieve high-efficiency chalcopyrite solar cells. Based on the measurements and analysis of the fabricated samples, the ZMO films with the controllable bandgap from 3.3 to 3.72 eV can exhibit a single wurtzite phase depending on the growth temperature and Mg content. Furthermore, the resistivity of ZMO films is comparable to that of ZnO film. It is a good indication that ZMO film is superior to CdS or ZnO films as buffer and window layers mainly due to its controllable bandgap energy and safety. As a result, the solar cells with ZMO buffer were fabricated without any surface treatment of Cu(InGa)(SSe)2 (CIGSSe) absorber or antireflection coating, and the efficiency of 10.24% was obtained.  相似文献   

3.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

4.
Quantum wells (QWs) consisting of Si and Si-related materials (such as SiO2) are of interest for solar cell work because they can possibly be used as a surface passivating antireflection (AR) coating or as the top cell in an all-silicon tandem solar cell. In this study, we fabricate SiO2/Si/SiO2 QW layers by RF magnetron sputtering and thermal oxidation. On high-resistivity (300 Ω cm) n-type silicon wafer substrates, the effective surface recombination velocity provided by our SiO2/Si/SiO2 QWs is around 4 cm/s for 13 Å Si thickness and 480 cm/s for 150 Å Si thickness. The parasitic optical absorption in the well-passivating QWs is negligible for terrestrial photovoltaic applications. However, they have very poor AR properties on Si wafers and hence would have to be covered by an additional reflection reducing dielectric film.  相似文献   

5.
Cd1−xZnxTe alloy films with 1.6 and 1.7 eV band gaps were deposited by RF magnetron sputtering from targets made either of mixed powders or alloys of CdTe and ZnTe (25% and 40%). High-quality polycrystalline films with the (1 1 1) preferred orientation were obtained. The films were characterized using X-ray diffraction (XRD), scanning electron microscopy, resistivity, optical absorption, Raman, and photoluminescence. The EDS, XRD, and optical absorption analysis indicated that the x-value of the as-grown films were typically 0.20 and 0.30 for films sputtered from 25% and 40% ZnTe containing targets, respectively. The as-deposited alloy films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. Therefore, we have studied various post-deposition treatments with vapors of chlorine-containing materials, CdCl2 and ZnCl2, in dry air or H2/Ar ambient at 390 °C. The best performance of a Cd1−xZnxTe cell (, ) was found for treatment with vapors of the mixed CdCl2+0.5%ZnCl2 in an H2/Ar ambient after pre-annealing at 520 °C in pure H2/Ar.  相似文献   

6.
Surface sulfurization of Cu(In,Ga)Se2 (CIGS) thin films was carried out using two alternative techniques that do not utilize toxic H2S gas; a sequential evaporation of In2S3 after CIGS deposition and the annealing of CIGS thin films in sulfur vapor. A Cu(In,Ga) (S,Se)2 thin layer was grown on the surface of the CIGS thin film after sulfurization using In2S3, whereas this layer was not observed for CIGS thin films after sulfurization using sulfur vapor, although a trace quantity of S was confirmed by AES analysis. In spite of the difference in the surface modification techniques, the cell performance and process yield of the ZnO:Al/CdS/CIGS/Mo/glass thin-film solar cells were remarkably improved by using both surface sulfurization techniques.  相似文献   

7.
The conventional process for back side passivation with full face Al screen printing layer is not suitable for very thin multicrystalline (mc-Si) solar cells and approaches to new technological processes are searched for. More investigations have been concentrated on local aluminum contacts and passivation coatings with different layers on mc-Si wafers. The aim of this work is to prove that (Al2O3)x(TiO2)1−x is one promising candidate to be applied as passivation layer on multicrystalline Si. Investigations were performed on dielectric films of pseudobinary alloy (PBA) (Al2O3)x(TiO2)1−x, prepared by chemical solution deposition known initially as sol–gel method. It was determined that their optical, dielectric and electrophysical properties are suitable for applications of these layers as back side surface passivation for thin multicrystalline silicon cells.  相似文献   

8.
The purpose of this study was to investigate the NOx formation and reduction mechanisms in staged O2/CO2 combustion and in air combustion. A flat CH4 flame doped with NH3 for fuel-N was formed over the honeycomb, and NOx formation characteristics were investigated. In addition, chemiluminescence of OH* distribution was measured, and CHEMKIN-PRO was used to investigate the detailed NOx reduction mechanism. In general, the NOx conversion ratio decreases with decreasing primary O2/CH4 ratio, whereas NH3 and HCN, which are easily converted to NOx in the presence of O2, increases rapidly. Therefore, a suitable primary O2/CH4 ratio exists in the staged combustion. Our experiments showed the primary O2/CH4 ratio, which gave the minimum fixed nitrogen compounds in O2/CO2 combustion, was lower than in air combustion. The NOx conversion ratio in O2/CO2 combustion was lower than in air combustion by 40% in suitable staged combustion. This could be explained by high CO2 concentrations in the O2/CO2 combustion. It was shown that abundant OH radicals were formed in O2/CO2 combustion through the CO2 + H → CO + OH, experimentally and numerically. OH radicals produced H and O radicals through H2 + OH → H + H2O and O2 + H → OH + O, because a mass of hydrogen source exists in the CH4 flame. O and OH radicals formed in the fuel-rich region enhanced the oxidation of NH3 and HCN. NOx formed by the oxidation of NH3 and HCN was converted to N2 because the oxidation occurred in the fuel-rich region where the NOx reduction effect was high. In fact, the oxidation of NH3 and HCN in the fuel-rich region was preferable to remaining NH3 and HCN before secondary O2 injection in the staged combustion. A significant reduction in NOx emission could be achieved by staged combustion in O2/CO2 combustion.  相似文献   

9.
Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018 cm−3 and resistivity of 10−1 Ω cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.  相似文献   

10.
This work is a contribution towards the understanding of the properties of hydrogenated silicon nitride (SiNx:H) that lead to efficient surface and bulk passivation of the silicon substrate. Considering the deposition system used (low-frequency plasma-enhanced chemical vapour deposition (PECVD)), we report very low values of surface recombination velocity Seff. As-deposited Si-rich SiNx:H leads to the best results (n-type Si: Seff=4 cm/s - p-type Si: Seff=14 cm/s). After annealing, the surface passivation quality is drastically deteriorated for Si-rich SiNx:H whereas it is lightly improved for low refractive index SiNx:H (n∼2-2.1). The chemical analysis of the layers highlighted a high hydrogen concentration, regardless the SiNx:H stoichiometry. However, the involved H-bond types as well as the hydrogen desorption kinetics are strongly dependent on the SiNx:H composition. Furthermore, “N-rich” SiNx:H appears to be denser and thermally more stable than Si-rich SiNx:H. When subjected to a high-temperature treatment, such a layer is believed to induce the release of hydrogen in its atomic form, which consequently leads to an efficient passivation of surface and bulk defects of the Si substrate. The results are discussed and compared with the literature data reported for the different configurations of PECVD reactors.  相似文献   

11.
Antireflection coatings (ARCs) have become one of the key issues for mass production of Si solar cells. They are generally performed by vacuum processes such as thermal evaporation, reactive sputtering, and plasma-enhanced chemical vapor deposition. In this work, a sol–gel method has been demonstrated to prepare the ARCs for the non-textured monocrystalline Si solar cells. The spin-coated TiO2 single-layer, SiO2/TiO2 double-layer and SiO2/SiO2–TiO2/TiO2 triple-layer ARCs were deposited on the Si solar cells and they showed good uniformity in thickness. The measured average optical reflectance (400–1000 nm) was about 9.3, 6.2 and 3.2% for the single-layer, double-layer and triple-layer ARCs, respectively. Good correlation between theoretical and experimental data was obtained. Under a triple-layer ARC condition, a 39% improvement in the efficiency of the monocrystalline Si solar cell was achieved. These indicate that the sol–gel ARC process has high potential for low-cost solar cell fabrication.  相似文献   

12.
We have investigated the electrochemical deposition of modulated thin films based on the CuxIn2−xSe2 system. CuInSe2 is a leading alternative to silicon for use in thin film photovoltaic solar cells due to its optical absorption and electrical characteristics. Alternating layers of two different compositions based on the CuxIn2−xSe2 system were potentiostatically deposited. These nanometer-scale layers are used to form reduced-dimensionality structures such as superlattices that can be used in concentrator solar cells. We have used X-ray diffraction, energy-dispersive spectroscopy, and scanning tunneling microscopy to characterize our asdeposited thin films. The ability of the scanning tunneling microscope to resolve the individual nanoscale layers of our multilayered thin films is shown and is used to determine modulation wavelengths.  相似文献   

13.
CuIn1−xGaxSe2 polycrystalline thin films were prepared by a two-step method. The metal precursors were deposited either sequentially or simultaneously using Cu–Ga (23 at%) alloy and In targets by DC magnetron sputtering. The Cu–In–Ga alloy precursor was deposited on glass or on Mo/glass substrates at either room temperature or 150°C. These metallic precursors were then selenized with Se pellets in a vacuum furnace. The CuIn1−xGaxSe2 films had a smooth surface morphology and a single chalcopyrite phase.  相似文献   

14.
In this work the thermal stability of the electronic surface passivation of remote plasma-enhanced chemical vapour deposited (RPECVD) silicon nitride (SiN) films is investigated with the aim to establish a cost-effective screen-printing and firing-through-the-SiN process for bifacial silicon (Si) solar cells. As a key result, RPECVD SiN films provide an excellently thermally stable surface passivation quality if they feature a refractive index in the range between 2.0 and 2.2. After a short anneal above 850°C the surface recombination velocity on 1.5 Ωcm p-type float-zone (FZ) Si remains at a very low level of about 20 cm/s. First bifacial silicon solar cells with screen-printed rear contacts on 1.5 Ωcm p-type FZ Si yield a very promising rear efficiency of 13.4%.  相似文献   

15.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

16.
Surface recombination velocities as low as 10 cm/s have been obtained by treated atomic layer deposition (ALD) of Al2O3 layers on p-type CZ silicon wafers. Low surface recombination is achieved by means of field induced surface passivation due to a high density of negative charges stored at the interface. In comparison to a diffused back surface field, an external field source allows for higher band bending, that is, a better performance. While this process yields state of the art results, it is not suited for large-scale production. Preliminary results on an industrially viable, alternative process based on a pseudo-binary system containing Al2O3 are presented, too. With this process, surface recombination velocities of 500–1000 cm/s have been attained on mc-Si wafers.  相似文献   

17.
The effects of conduction band offset of window/Cu(In,Ga)Se2 (CIGS) layers in wide-gap CIGS based solar cells are investigated. In order to control the conduction band offset, a Zn1−xMgxO film was utilized as the window layer. We fabricated CIGS solar cells consisting of an ITO/Zn1−xMgxO/CdS/CIGS/Mo/glass structure with various CIGS band gaps (Eg≈0.97–1.43 eV). The solar cells with CIGS band gaps wider than 1.15 eV showed higher open circuit voltages and fill factors than those of conventional ZnO/CdS/CIGS solar cells. The improvement is attributed to the reduction of the CdS/CIGS interface recombination, and it is also supported by the theoretical analysis using device simulation.  相似文献   

18.
The effect of hydrogen-radical annealing for SiO2 passivation was examined. The annealing effect was analyzed by measuring effective lifetime and C-V characteristics and was compared with the effects of forming gas annealing (FGA) and hydrogen RF plasma annealing. The effect of hydrogen-radical annealing is much higher than those of FGA and hydrogen RF plasma annealing. It was also confirmed that both changes of surface recombination velocity and interface state density showed the same tendency. Furthermore, the investigations of hydrogen-radical density showed that by using microwave afterglow method, hydrogen-radicals could be generated much more than that by RF plasma. Accordingly, more interface trap density could be terminated and surface recombination velocity was effectively decreased by using microwave afterglow method.  相似文献   

19.
We have developed an electrodeposition bath based on a buffer solution so that the stability of the electrodeposition process is enhanced and no metal oxides or hydroxides precipitate out of solution. The buffer-solution-based bath also deposits more gallium in the precursor films. As-deposited precursors are stoichiometric or slightly Cu-rich CuIn1−xGaxSe2. Only a minimal amount of indium was added to the electrodeposited precursor films by physical vapor deposition to obtain a 9.4%-efficient device.  相似文献   

20.
An improvement of electrical properties of pulsed laser crystalllized silicon films was achieved by simple heat treatment with high-pressure H2O vapor. The electrical conductivity of 7.4×1017 cm−3 phosphorus-doped 50-nm-thick pulsed laser crystallized silicon films was markedly increased from 1.6×10−5 S/cm (as crystallized) to 2 S/cm by heat treatment at 270°C for 3 h with 1.25×106 Pa H2O vapor because of reduction of density of defect states localized at grain boundaries. Spin density was reduced from 1.7×1018 cm−3 (as crystallized) to 1.2×1017 cm−3 by heat treatment at 310°C for 3 h with 1.25×106 Pa H2O vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号