首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eighteen cultures of starter lactic acid bacteria with or without added adjunct cultures, isolated from Egyptian dairy products, were evaluated in experimental Ras cheese for flavour development. Chemical composition of experimental cheeses was within the legal limit for Ras cheese in Egypt. All cultures used in this study had no effect on chemical composition of Ras cheese. Very significant variations in free amino acids, free fatty acids and sensory evaluation have been found among the cultures used in Ras cheesemaking. The levels of free amino acids and free fatty acids were correlated well with flavour development in Ras cheese. Seven of the tested cultures produced acceptable flavour and texture of Ras cheese. The highest overall score of flavour intensity, flavour and texture acceptability were in cheese made using YY47 lactic culture in addition to adjunct culture of Lactobacillus helveticus, Lactobacillus paracasei subsp. paracasei, Lactobacillus delbrueckii subsp. lactis and Enterococcus faecium. This culture can be recommended for Ras cheese manufacture using pasteurized milk.  相似文献   

2.
Hispánico cheese was manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639, bacteriocin-nonproducing L. lactis ssp. lactis INIA 437, or a combination of both strains, as starter cultures. Lactobacillus helveticus LH 92, a culture of high amino-peptidase activity sensitive to lacticin 481, was added to all vats. Milk inoculation with the bacteriocin producer promoted early lysis of Lb. helveticus cells in cheese. Cell-free aminopeptidase activity in cheese made with the 3 lactic cultures was 1.8 times the level reached in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 15 d of ripening. Proteolysis (as estimated by the o-phthaldialdehyde method) in cheese made with the 3 lactic cultures was twice as high, and the level of total free amino acids 2.4 times the level found in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 25 d of ripening. Hydrophobic and hydrophilic peptides and their ratio were at the lowest levels in cheese made with the 3 lactic cultures, which received the lowest scores for bitterness and the highest scores for taste quality.  相似文献   

3.
Freeze-shocked cultures of Lactobacillus helveticus or Lactobacillus casei were added at levels of 1% and 2% to Ras cheese milk prior to renneting as an adjunct starter to enhance flavour development of cheese. These additives did not affect the gross chemical composition of the cheeses but increased the formation of soluble nitrogenous compounds, free volatile fatty acids, the flavour intensity and improved the body characteristic. Also, the counts of bacterial groups (total, proteolytic and lipolytic) of the cheese treated with freeze-shocked lactobacilli were higher than in the control. Moreover, the ripening period was reduced to be 2 months compared with 4 months required for the control cheese. Also, using freeze-shocked culture of L. helveticus was the most effective in this respect.  相似文献   

4.
《Food chemistry》1986,21(4):301-313
An attempt has been made to shorten the ripening period of Ras cheese. Cheese was made from curd incorporated with a heat-shocked culture of either Lactobacillus casei or Lactobacillus helveticus at levels of 1% and 2% each. These treatments did not considerably affect the gross chemical composition of the cheese but influenced flavour intensity, body characteristics, the formation of soluble nitrogen compounds and free volatile fatty acids. Meanwhile, total proteolytic and lipolytic bacterial counts were also stimulated. Cheese with added heat-shocked lactobacilli showed desirable flavour and consistency 1–2 months earlier than control cheese made without additives.  相似文献   

5.
以副干酪乳杆菌作为发酵剂,研究其在滋味(可溶性物质)和香气(挥发性化合物)两方面对发酵香肠风味的改善情况。采用电子鼻分析未添加发酵剂的香肠—自然发酵(1#)与添加发酵剂的香肠(2#)的香气组成,并利用气相色谱-质谱法(GC-MS)和氨基酸自动分析仪测定其挥发性成分及可溶性呈味物质的含量。结果表明,添加副干酪乳杆菌的发酵香肠较未添加的氨基酸的含量有所提高,谷氨酸、天门冬氨酸、甘氨酸、丝氨酸、丙氨酸等呈味氨基酸含量增加明显。醇、酸、酯、酮类等挥发性成分物质增加,说明副干酪乳杆菌可以很好的改善发酵香肠的风味。   相似文献   

6.
Hard cooked cheeses are mostly manufactured with lactic starters of Lactobacillus helveticus, which constitute a major proteolytic agent in the food. In this work, we assessed the proteolysis produced by enzymes of two strains of L. helveticus in a new cheese model, which consisted of a sterile substrate prepared with hard-cooked cheeses, and identified the time of ripening when main changes in proteolysis are produced. The extract, a representative model of the aqueous phase of the cheeses, was obtained from Reggianito cheeses of different ripening times (3, 90, and 180 days) made with starters composed of the strains tested, either SF138 or SF209. To obtain the substrate, the cheese was extracted with water, then centrifuged and the aqueous phase was sterilized by filtration through membrane (0.45 ??m). The substrates were incubated at 34 °C during 21 days; samples were taken at 0, 3, 7, 14, and 21 days. Sterility was verified by plating samples on skim milk agar and incubating at 37 °C for 48 h. Proteolysis was determined by liquid chromatography of soluble peptides and free amino acids. Great variation in peptide profiles was found as incubation progressed in cheese extracts, which evidenced that proteases and peptidases from the starter were active and able to degrade the proteinaceous material available in the extracts. The extracts derived from cheeses with L. helveticus SF138 showed low production of peptides and a notable increase in free amino acids content during incubation. L. helveticus SF209, on the contrary, caused an increase on soluble peptides, but the free amino acids accumulation was lower than in the first case, which suggested that L. helveticus SF209 had either a low peptydolitic activity or produced an intense amino acids breakdown. This trend was more evident for extracts prepared with 90-day-old cheeses. It was concluded that the strains of L. helveticus assayed showed potentially complementary proteolytic abilities, as SF209 was able to provide a continuous replenishment of peptides during incubation, while SF138 increased their hydrolysis to free amino acids. The extract was an appropriate medium to model hard cooked cheese ripening in short periods of time.  相似文献   

7.
The application of Kluyveromyces marxianus (IFO 288), Lactobacillus delbrueckii ssp. bulgaricus (ATCC 11842) and Lactobacillus helveticus (ATCC 15009) as starter cultures for sourdough bread making was examined. Production of lactic and acetic acids, bread rising, volatile composition, shelf-life and organoleptic quality of the sourdough breads were evaluated. The amount of starter culture added to the flour, the dough fermentation temperature and the amount of sourdough used were examined in order to optimise the bread making process. The use of mixed cultures led to higher total titratable acidities and lactic acid concentrations compared to traditionally made breads. Highest acidity (3.41 g lactic acid/kg of bread) and highest resistance to mould spoilage were observed when bread was made using 50% sourdough containing 1% K. marxianus and 4% L. delbrueckii ssp. bulgaricus. The use of these cultures also improved the aroma of sourdough breads, as shown by sensory evaluations and as revealed by GC–MS analysis.  相似文献   

8.
The objective of this investigation was to compare the composition and changes in the concentration of volatiles in low‐fat and full‐fat Tulum cheeses during ripening. Tulum cheese was manufactured from low‐ or full‐fat milk using exopolysaccharide (EPS)‐producing or non‐EPS‐producing starter cultures. A total of 82 volatile compounds were identified belonging to the following chemical groups: acids (seven), esters (21), ketones (14), aldehydes (six), alcohols (14) and miscellaneous compounds (20). The relative amounts of acids, alcohols and aldehydes increased in the cheeses made with EPS‐producing cultures during 90 days of ripening. Differences were found in the volatile profile of full‐fat Tulum cheese compared with the low‐fat variant, especially after 90 days of ripening. Exopolysaccharide‐producing cultures changed the volatile profile, and the EPS‐producing cultures including Streptococcus thermophilus + Lactobacillus delbrueckii subsp. bulgaricus + Lactobacillus helveticus (LF‐EPS2) produced cheese with higher levels of methyl ketones and aldehydes than the non‐EPS cultures. In the sensory analysis, full‐fat Tulum cheeses and the cheese produced with the EPS‐producing culture containing Lb. helveticus (LF‐EPS2) were preferred by the expert panel. It was concluded that the use of EPS‐producing starter cultures in the manufacture of low‐fat Tulum cheese had the potential to improve the flavour.  相似文献   

9.
The use of several autochthonous strains of lactic acid bacteria, including Lactobacillus paracasei subsp. paracasei as adjunct of the starter in the manufacture of Manchego cheese, was evaluated in an attempt to improve the aroma of the industrial Manchego cheese. Volatile composition and odour characteristics were evaluated and compared to those in Manchego cheese manufactured with a commercial starter (CS) culture and with raw milk cheese manufactured without starter. Manchego cheeses manufactured with two autochthonous strains of Lactococcus lactis subsp. lactis displayed a similar volatile profile and odour characteristics to the cheese made with the CS. The use of the strain Lactobacillus paracasei subsp. paracasei CECT 7882 as adjunct of the Lactococcus strains produced cheeses with higher amounts of some free fatty acids and alcohols, acetoin, lactones, phenylacetaldehyde, 2-phenylethanol and linalool, and higher scores of the odour intensity, odour quality, and ewe’s milk odour than the CS cheeses. It resulted in an intensification and improvement of industrial Manchego cheese aroma.  相似文献   

10.
Cheddar cheeses were made from raw (R1, R8) or pasteurised (P1, P8) milk and ripened at 1°C (P1, R1) or 8°C (P8, R8). Volatile compounds were extracted from 6 month-old cheeses and analysed, identified and quantified by gas chromatography-mass-spectrometry. A detailed sensory analysis of the cheeses was performed after 4 and 6 months of ripening. The R8 cheeses had the highest and P1 the lowest concentrations of most of the volatile compounds quantified (fatty acids, ketones, aldehydes, esters, alcohols, lactones and methional). The R8 and P8 cheeses contained higher levels of most of the volatiles than R1 and P1 cheeses. Ripening temperature and type of milk influenced most of the flavour and aroma attributes. Principal component analysis (PCA) of aroma and flavour attributes showed that P1 and R1 had similar aroma and flavour profiles, while R8 had the highest aroma and flavour intensities, highest acid aroma and sour flavour. The age of cheeses influenced the perception of creamy/milky and pungent aromas. PCA of the texture attributes separated cheeses on the basis of ripening temperature. The R8 and P8 cheeses received significantly higher scores for perceived maturity than P1 and R1 cheeses. The P1 and R1 cheeses had similar values for perceived maturity. In a related study, it was found that concentrations of amino acids and fatty acids were similar in R1 and P1 during most of the ripening period, and R1 and P1 cheeses had low numbers of non-starter lactic acid bacteria (NSLAB). The panel found that ripening temperature, type of milk and age of cheeses did not influence the acceptability of cheese. It is concluded that NSLAB contribute to the formation of volatile compounds and affect the aroma and flavour profiles and the perceived maturity of Cheddar cheese.  相似文献   

11.
The contribution to flavor generation and secondary proteolysis of 2 strains of mesophilic lactobacilli isolated from cheese was studied. Miniature soft cheeses (200 g) were produced with or without the inclusion of a culture of Lactobacillus plantarum I91 or Lactobacillus casei I90 in the starter composed of Streptococcus thermophilus. During ripening, cheeses containing the added lactobacilli showed an increased content of total free amino acids, but this increase was only significant in cheeses with Lb. plantarum I91. In addition, free amino acid profiles were modified by selective increases of some amino acids, such as Asp, Ser, Arg, Leu, and Phe. Cheeses inoculated with Lb. plantarum I91 or Lb. casei I90 were also characterized by a significantly higher concentration of diacetyl, a key flavor compound, and an increased content of acetoin. Results suggest an increase in the catabolism of either citrate or aspartate, with the production of the derived aroma compounds. Overall, aspartate content increased in both lactobacilli-added cheeses, whereas citrate was more or less constant, suggesting that aspartate could be the source of increased diacetyl and acetoin. A triangle aroma test showed that the addition of the lactobacilli strains significantly changed the sensory attributes of cheeses. At least 11 of 12 panelists commented that the aroma of cheeses with adjuncts was more buttery than that of control cheeses, which is desirable in most soft cheeses. Both Lb. plantarum I91 and Lb. casei I90 performed well as adjunct cultures by influencing cheese aroma development and cheese proteolysis.  相似文献   

12.
In this work, we studied the growth, survival, and peptidolytic activity of Lactobacillus plantarum I91 in a hard-cheese model consisting of a sterile extract of Reggianito cheese. To assess the influence of the primary starter and initial proteolysis level on these parameters, we prepared the extracts with cheeses that were produced using 2 different starter strains of Lactobacillus helveticus 138 or 209 (Lh138 or Lh209) at 3 ripening times: 3, 90, and 180 d. The experimental extracts were inoculated with Lb. plantarum I91; the control extracts were not inoculated and the blank extracts were heat-treated to inactivate enzymes and were not inoculated. All extracts were incubated at 34°C for 21 d, and then the pH, microbiological counts, and proteolysis profiles were determined. The basal proteolysis profiles in the extracts of young cheeses made with either strain tested were similar, but many differences between the proteolysis profiles of the extracts of the Lh138 and Lh209 cheeses were found when riper cheeses were used. The pH values in the blank and control extracts did not change, and no microbial growth was detected. In contrast, the pH value in experimental extracts decreased, and this decrease was more pronounced in extracts obtained from either of the young cheeses and from the Lh209 cheese at any stage of ripening. Lactobacillus plantarum I91 grew up to 8 log during the first days of incubation in all of the extracts, but then the number of viable cells decreased, the extent of which depended on the starter strain and the age of the cheese used for the extract. The decrease in the counts of Lb. plantarum I91 was observed mainly in the extracts in which the pH had diminished the most. In addition, the extracts that best supported the viability of Lb. plantarum I91 during incubation had the highest free amino acids content. The effect of Lb. plantarum I91 on the proteolysis profile of the extracts was marginal. Significant changes in the content of free amino acids suggested that the catabolism of free amino acids by Lb. plantarum I91 prevailed in a weakly proteolyzed medium, whereas the release of amino acids due to peptidolysis overcame their catabolism in a medium with high levels of free amino acids. Lactobacillus plantarum I91 was able to use energy sources other than lactose to support its growth because equivalent numbers of cells were observed in extracts containing residual amounts of lactose and in lactose-depleted extracts. The contribution of Lb. plantarum I91 to hard-cooked cheese peptidolysis was negligible compared with that of the starter strain; however, its ability to transform amino acids is a promising feature of this strain.  相似文献   

13.
Free amino acids and volatile compounds were analysed in a Roncal-type cheese made from pasteurized ovine milk with and without an added adjunct culture (Lactobacillus paracasei + Lactobacillus plantarum). In both batches, the total free amino acid concentration increased 11–12-fold with ripening time, the main amino acids being Leu, Glu, Lys, Phe, Val, and Ile. At the end of ripening, significant differences were recorded for Leu, Ile, Gaba, Phe, Pser, Ser, Gin, Ala, and Orn.  相似文献   

14.
Amino acid catabolism plays a major role in cheese aroma development. Previously, we showed that the lactococcal aminotransferases AraT and BcaT initiate the conversion of aromatic amino acids, branched-chain amino acids and methionine to aroma compounds. In this study, we evaluated the importance of these two enzymes in the formation of aroma compounds in a cheese model by using single araT and bcaT mutants and a double araT/bcaT mutant. We confirmed that addition of α-ketoglutarate, a co-substrate of aminotransferases, stimulates the conversion of amino acids to aroma compounds in cheese. The results demonstrated that AraT and BcaT are essential for conversion of aromatic and branched-chain amino acids to aroma compounds by Lactococcus lactis in the cheese model and that they also play a major role in the formation of volatile sulphur compounds from methionine. However, another pathway or another aminotransferase appears also to be weakly involved in the formation of these sulphur compounds.  相似文献   

15.
Old-style cheese starters were evaluated to determine their ability to produce cheese aroma compounds. Detailed analyses of the aroma-producing potential of 13 old-style starter cultures were undertaken. The proteolytic profile of the starters was established by an accelerated ripening study using a model cheese slurry and compared with those of a commercial aromatic starter and commercial Cheddar cheeses. To evaluate the aromatic potential of the starter cultures, quantification of free amino acids liberated and volatile compounds after 15 d of ripening at 30°C as well as sensory analysis were carried out. Results showed that proteolysis patterns of all 13 starter cultures in the curd model were comparable to those of commercial Cheddar cheeses. All tested cultures demonstrated the ability to produce high amounts of amino acids recognized as precursors of aroma compounds. Several differences were observed between the starters and commercial Cheddar cheeses regarding some amino acids such as glutamate, leucine, phenylalanine, proline, and ornithine, reflecting the various enzymatic systems present in the starters. Starters Bt (control) and ULAAC-E exhibited various significant differences regarding their free amino acid profiles, as confirmed by sensory analysis. In addition, identification of volatile compounds confirmed the presence of several key molecules related to aroma, such as 3-methylbutanal and diacetyl. Besides the aroma-producing aspect, 2 starters (ULAAC-A and ULAAC-H) seem to possess an important ability to generate large amounts of γ-aminobutyric acid, which contributed up to 15% of the total amino acids present in the model curd after 15 d ripening. γ-Aminobutyric acid is an amine well-known for its antihypertensive and calming effects.  相似文献   

16.
Cheese ripening involves a complex series of biochemical events that contribute to the development of each cheese characteristic taste, aroma and texture. Proteolysis, which has been the subject of active research in the last decade, is the most complex of these biochemical events. However, also aminoacyl derivates of non-proteolytic origin (γ-glutamyl-amino acids and lactoyl-amino acids) with interesting sensory properties have been identified in cheeses. In the present work, an enzymatic activity producing γ-glutamyl-phenylalanine in Parmigiano-Reggiano water soluble extracts was observed. It was hypothesized that γ-glutamyl-amino acids and lactoyl-amino acids could be originated by enzymes of bacterial origin. In order to confirm this hypothesis, Lactobacillus helveticus and Lactobacillus rhamnosus were chosen as representative of starter and non starter microbiota of Parmigiano Reggiano cheese. They were used as model bacteria, in the presence of suitable precursors, to verify their ability to produce γ-glutamyl-phenylalanine and lactoyl-phenylalanine. The eventual abilities of these strains were tested both during growth and after cell lyses. While γ-glutamyl-phenylalanine was produced only by lysed cells, lactoyl-phenylalanine was produced either by growing or lysed cells in different amount depending on the species, the cells condition and the time of incubation.  相似文献   

17.
The isolation and identification of lactic acid bacteria (LAB) from raw ewes’ milk and traditional Pecorino Sardo cheese made from this milk without the addition of starter culture was carried out to define the autochthonous lactic microflora present in milk and the evolution of LAB during cheese ripening. Isolation of 275 strains belonging to different Lactococcus, Lactobacillus, Streptococcus and Enterococcus species was achieved. Coccal-shaped LAB were found to predominate during cheese fermentation, while lactobacilli were preponderate during the latter phase of ripening. The technological selection of a total of 174 LAB strains belonging to the species Lactococcus lactis, Streptococcus thermophilus, Lactobacillus helveticus and Lb. casei allowed an experimental starter to be prepared, in which a potentially probiotic species, Lb. casei was used. The suitability of the autochthonous starter culture was tested in cheese-making trials, using thermised ewes’ milk, by comparing experimental Pecorino Sardo cheese with a control cheese produced at industrial scale using a whey starter culture from previous batches of manufacture. In particular, microbiological and physicochemical parameters were determined over 210 days of cheese ripening. Although sensory evaluation did not show any significant difference between experimental and control Pecorino Sardo cheeses, the use of the selected autochthonous starter allowed the production of experimental cheese with a significantly higher level of free amino acids, in particular essential amino acids, in comparison with the Pecorino Sardo control cheeses.  相似文献   

18.
The enzymatic conversion of aromatic amino acids to aroma compounds plays a role in the formation of an undesirable floral aroma in Cheddar-like cheeses. In lactococci, the first step of aromatic amino acid degradation is a transamination, catalysed by an aromatic aminotransferase (AraT). We observed previously that in vitro, araT inactivation prevented degradation of aromatic amino acids and decreased degradation of Met and Leu. In this study we evaluated the effect of araT inactivation in Lactococcus lactis on flavour development in St. Paulin-type cheese. The degradation of amino acids was monitored by using radiolabelled amino acids and the volatile compounds formed were analysed by GC-MS. The development of cheese odour was also evaluated by sniffing. We confirmed that the availability of an -ketoacid acceptor for transamination is the first limiting factor for amino acid conversion to aroma compounds in cheese. In the presence of -ketoglutarate, araT inactivation greatly prevented formation of floral aroma compounds from aromatic amino acids while it did not affect the formation of volatile aroma compounds from branched-chain amino acids and methionine. However, the sensory analysis by sniffing did not reveal any significant effect of the gene inactivation although the odour of cheese made with the mutant tended to be less floral than that of cheese made with the wild type strain.  相似文献   

19.
采用固相微萃取-气相色谱-质谱联用技术检测分析Streptococcus thermophilus与Lactobacillus delbrueckii subsp.bulgaricus单菌及复配发酵牛乳中的挥发性风味物质,结合相对气味活度值(relative odor activity value,ROAV)探讨发酵牛乳中关键性风味物质。结果表明:本实验共鉴定出100种挥发性风味物质,包括酸类、酮类、醛类、醇类、酯类、烷烃类和芳香族类化合物等。主成分分析表明,表征S.thermophilus单菌发酵乳的关键性风味物质是双乙酰、正壬醛和甲苯;表征L.bulgaricus单菌发酵乳的关键性风味物质是正庚醛、丁酸-2-甲基丙酯和1-庚醇;表征S.thermophilus与L.bulgaricus复配发酵乳的关键性风味物质是乙醛、3-甲基正丁醛、乙偶姻、2-壬酮、2-庚酮、醋酸乙烯酯、碳酸庚基苯基酯、甲酸乙烯酯和2-壬醇。相较于单菌发酵,复配发酵的风味物质组成、各组分相对含量及关键性风味物质均发生改变。  相似文献   

20.
The effect of an added adjunct culture consisting of facultatively heterofermentative lactobacilli (FHL) on the volatile compounds and sensory characteristics of a Spanish ewes'-milk cheese was examined. Three cheese batches were prepared using a commercial starter, one from raw milk, another from pasteurized milk, and a third from pasteurized milk with an added culture of wild Lactobacillus. paracasei+Lb. plantarum. Analysis of the volatile compounds was carried out by the purge and trap method and gas chromatography with a mass spectrometer and disclosed a total of 86 compounds belonging to the chemical families hydrocarbons, fatty acids, esters, ketones, aldehydes, and alcohols. After ageing for 120 and 240 days, the cheese samples underwent sensory analysis by a panel of expert assessors. The attributes evaluated were characteristic odour and odour intensity and characteristic aroma and aroma intensity. Pasteurization of the milk had an effect on the formation of certain volatile compounds, adversely affecting the characteristic flavour of the cheese. Use of the adjunct culture in addition to the commercial starter improved the flavour of the cheese made from the pasteurized milk, which earned sensory scores similar to those awarded to the cheese made from the raw milk. Use of adjunct cultures consisting of indigenous FHL strains could help to conserve the traditional characteristics of Roncal cheese made from pasteurized milk, although some technical adjustments to the Regulations would be needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号