首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flaxseed protein concentrate containing-mucilage (FPCCM) was used to stabilize soybean oil-in-water emulsions. The effects of FPCCM concentration (0.5, 1.0, 1.5% w/v) and oil-phase volume fraction (5, 10, 20% v/v) on emulsion stability and rheological properties of the soybean oil-in-water emulsions were investigated. Z-average diameter, zeta-potential, creaming index and rheological properties of emulsions were determined. The result showed that FPCCM concentration significantly affected zeta-potential, creaming rate and emulsion viscosity. The increasing of FPCCM concentration led to a more negative charged droplet and a lower creaming rate. Oil-phase volume fraction significantly affected Z-average diameter, rheological properties, creaming index and creaming rate. With the increase of oil-phase volume fraction, both Z-average diameter and emulsion viscosity increased, while creaming index and creaming rate decreased. The rheological curve suggested that the emulsions were shear-thinning non-Newtonian fluids.  相似文献   

2.
The effect of protein concentrations (0.1, 0.25, 0.5, 1.0, 1.5 and 2.0% w/v) and oil volume fractions (5, 15, 25, 35 and 45% v/v) on properties of stabilized emulsions of sweet potato proteins (SPPs) were investigated by use of the emulsifying activity index (EAI), emulsifying stability index (ESI), droplet size, rheological properties, interfacial properties and optical microscopy measurements at neutral pH. The protein concentration or oil volume fraction significantly affected droplet size, interfacial protein concentration, emulsion apparent viscosity, EAI and ESI. Increasing of protein concentration greatly decreased droplet size, EAI and apparent viscosity of SPP emulsions; however, there was a pronounced increase in ESI and interfacial protein concentration (P < 0.05). In contrast, increasing of oil volume fraction greatly increased droplet size, EAI and emulsion apparent viscosity of SPP emulsions, but decreased ESI and interfacial protein concentration significantly (P < 0.05). The rheological curve suggested that SPP emulsions were shear-thinning non-Newtonian fluids. Optical microscopy clearly demonstrated that droplet aggregates were formed at a lower protein concentration of <0.5% (w/v) due to low interfacial protein concentration, while at higher oil volume fractions of >25% (v/v) there was obvious coalescence. In addition, the main components of adsorbed SPP at the oil–water interface were Sporamin A, Sporamin B and some high-molecular-weight aggregates formed by disulfide linkage.  相似文献   

3.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

4.
An influence of low molecular weight (LMW) chitosan on physicochemical properties and stability of low-acid (pH 6) tuna oil-in-water emulsion stabilized by non-ionic surfactant (Tween 80) was studied. The mean droplet diameter, droplet charge (ζ-potential), creaming stability and microstructure of emulsions (5 wt% oil) were evaluated. The added chitosan was adsorbed on the surface of oil droplets stabilized by Tween 80 through electrostatic interactions. Such addition of chitosan at different concentrations (0–10 wt%) to emulsions showed slight effect on the mean droplet diameter. However, the degree of flocculation was a function of chitosan concentration assessed by emulsions' microstructure and creaming index. The impact of chitosan on the strength of the colloidal interaction between the emulsion droplets increased with increasing chitosan concentration. The mean diameter of droplet in emulsions increased with increasing NaCl because of the electrostatic screening effect. The addition of LMW chitosan could be performed to create tuna oil emulsions with low-acid to neutral character, as well as various physicochemical and stability properties suitable for health food products.  相似文献   

5.
The influence of calcium ions and chelating agents on the thermal stability of model nutritional beverages was examined. Oil-in-water emulsions (6.94% (w/v) soybean oil, 0.35% (w/v) WPI, 0.02% (w/v) sodium azide, 20 mM Tris buffer, 0–10 mM CaCl2, and 0–40 mM EDTA or citrate, pH 7.0) were stored at temperatures between 30 and 120 °C for 15 min. The particle size, particle charge, creaming stability, rheology, and free-calcium concentration of the emulsions were then measured. In the absence of chelating agents, appreciable droplet aggregation occurred in emulsions held at temperatures from 80 to 120 °C, which led to increased emulsion particle diameter, shear-thinning behavior, apparent viscosity, and creaming instability. Addition of chelating agents to the emulsions prior to heating decreased, but did not prevent, droplet aggregation in the emulsions. EDTA was more effective than citrate in decreasing droplet aggregation. Heat treatment increased the amount of chelating agents required to prevent droplet aggregation in the emulsions. Free-calcium concentration and droplet surface potential was independent of heat-treatment temperature, indicating that the performance of the chelating agents in binding calcium ions was not affected by the heat treatment. It was suggested that increased hydrophobic attractive interactions between the droplets occurred during heating, which induced droplet aggregation.  相似文献   

6.
The ability of flaxseed protein concentrate (FPC) to stabilize soybean oil-in-water emulsion was compared with that of soybean protein concentrate (SPC). The stability of emulsions increased with increase in protein concentration. The FPC-stabilized emulsions had smaller droplet size and higher surface charge, but worse stability at the same protein concentration compared to SPC-stabilized emulsions. Oil-in-water emulsions stabilized by both proteins were diluted and compared at different pH values (3–7), ionic strength (0–200 mM NaCl) and thermal treatment regimes (25–95 °C for 20 min). Considerable emulsion droplet flocculation occurred around iso-electric point of both proteins: FPC (pH 4.2) and SPC (pH 4.5). FPC and SPC-stabilized emulsions remained relatively stable against droplet aggregation and creaming at NaCl concentration below 100 and 50 mM, respectively. The emulsions stabilized by both proteins were fairly stable within these thermal processing regimes. FPC appears to be less effective as an emulsifier compared to SPC due to its lower emulsion viscosity. Hence, FPC could be more effective in emulsions that are fairly viscous.  相似文献   

7.
ABSTRACT:  Menhaden oil-in-water emulsions (20%, v/v) were stabilized by 2 wt% whey protein isolate (WPI) with 0.2 wt% xanthan gum (XG) in the presence of 10 mM CaCl2 and 200 μM EDTA at pH 7. Droplet size, lipid oxidation, and rheological properties of the emulsions were investigated as a function of heating temperature and time. During heating, droplet size reached a maximum at 70 °C and then decreased at 90 °C, which can be attributed to both heating effect on increased hydrophobic attractions and the influence of CaCl2 on decreased electrostatic repulsions. Combination of effects of EDTA and heat treatment contributed to oxidative stability of the heated emulsions. The rheological data indicate that the WPI/XG-stabilized emulsions undergo a state transition from being viscous like to an elastic like upon substantial thermal treatment. Heating below 70 °C or for less than 10 min at 70 °C favors droplet aggregation while heating at 90 °C or for 15 min or longer at 70 °C facilitates WPI adsorption and rearrangement. WPI adsorption leads to the formation of protein network around the droplet surface, which promotes oxidative stability of menhaden oil. Heating also aggravates thermodynamic incompatibility between XG and WPI, which contributes to droplet aggregation and the accumulation of more WPI around the droplet surfaces as well.  相似文献   

8.
The dynamic interfacial tension (DIFT) at oil–water interface, diffusion coefficients, surface hydrophobicity, zeta potential and emulsifying properties, including emulsion activity index (EAI), emulsion stability index (ESI) and droplet size of lentil protein isolate (LPI), were measured at different pH and LPI concentration, in order to elucidate its emulsifying behaviour. Sodium caseinate (NaCas), whey protein isolate (WPI), bovine serum albumin (BSA) and lysozyme (Lys) were used as benchmark proteins and their emulsifying property was compared with that of LPI. The speed of diffusion-controlled migration of these proteins to the oil/water interface, was in the following order: NaCas > LPI > WPI > BSA > Lys, while their surface hydrophobicity was in the following order: BSA > LPI > NaCas > WPI > Lys. The EAI of emulsions stabilised by the above proteins ranged from 90.3 to 123.3 m2/g and it was 93.3 ± 0.2 m2/g in LPI-stabilised emulsion. However, the stability of LPI-stabilised emulsions was slightly lower compared to that of WPI and NaCas-stabilised emulsions at the same protein concentration at pH 7.0. The ESI of LPI emulsions improved substantially with decrease in droplet size when protein concentration was increased (20–30 mg/ml). Reduction of disulphide bonds enhanced both the EAI and ESI compared to untreated samples. Heat treatment of LPI dispersions resulted in poor emulsion stability due to molecular aggregation. The stability of LPI-stabilised emulsions was found to decrease in the presence of NaCl. This study showed that LPI can be as effective emulsifiers of oil-in-water emulsions as are WPI and NaCas at ?20 mg/ml concentrations both at low and neutral pH. The emulsifying property of LPI can be improved by reducing the intra and inter-disulphide bond by using appropriate reducing agents.  相似文献   

9.
ABSTRACT Oil‐in‐water emulsions (20% n‐hexadecane, v/v) were stabilized by dodecyltrimethylammonium bromide (DTAB), Tween 20, or sodium dodecyl sulfate (SDS). Particle size distribution and creaming stability were measured before and after adding Escherichia coli cells to emulsions. Both E. coli strains promoted droplet flocculation, coalescence, and creaming in DTAB emulsions, although JM109 cells (surface charge = ‐35 mV) caused faster creaming than E21 cells (surface charge = ‐5 mV). Addition of bacterial cells to SDS emulsions promoted some flocculation and coalescence, but creaming stability was unaffected. Droplet aggregation and accelerated creaming were not observed in emulsions prepared with Tween 20. Surface charges of bacterial cells and emulsion droplets played a key role in emulsion stability.  相似文献   

10.
In this study, development of pea (Pisum sativum) protein stabilised dry and reconstituted emulsions is presented. Dry emulsions were prepared by spray-drying liquid emulsions in a laboratory spray-dryer. The effect of drying on the physical stability of oil-in-water emulsions containing pea protein-coated and pea protein/pectin-coated oil droplets has been studied. Oil-in-water emulsions (5 wt.% Miglyol 812 N, 0.25 wt.% pea protein, 11% maltodextrin, pH 2.4) were prepared that contained 0 (primary emulsion) or 0.2 wt.% pectin (secondary emulsion). The emulsions were then subjected to spray-drying and reconstitution (pH 2.4). The stability of the emulsions to dry processing was then analysed using oil droplet size, microstructure, Zeta potential, and creaming measurements. Obtained results showed that the secondary emulsions had better stability to droplet aggregation after drying than primary emulsions. To interpret these results, we propound that pectin, an anionic polysaccharide, formed a less charged protective layer around the protein interfacial film surrounding the oil droplets that improved their stability to spray-drying mainly by increasing steric effects.  相似文献   

11.
The potential use of flaxseed protein isolate (FPI) as an emulsifying agent was studied in combination with whey protein isolate (WPI) or alone. All the FPI and WPI–FPI emulsions were kinetically unstable. The increase of FPI concentration (0.7% w/v) led to a higher creaming stability of the FPI emulsions due partly to a reduction in interfacial tension between aqueous and oil phases, but mainly to the gel network formation. However at this same high FPI concentration, WPI–FPI emulsions showed a decrease in droplet size and creaming stability, which could be due to the presence of flaxseed gum in the protein isolate enhancing depletion effects. A protein excess was verified in the mixed systems (0.14 or 0.7% (w/v) FPI) and the increase of FPI concentration led to an even greater surface protein content. Increasing homogenization conditions (pressure and number of passes), the creaming stability of the FPI systems increased, mainly at higher concentration (0.7% w/v). Meanwhile, in the mixed systems, the creaming stability of the emulsions containing 0.7% (w/v) FPI decreased even more, but was improved for the emulsions with 0.14% (w/v) FPI. Thus, it was observed that systems containing only FPI at higher concentration were stabilized by gel formation, while in WPI–FPI systems there was a competition by interface between biopolymers with a consequent depletion process. As a result, more stable systems were obtained with WPI addition at lower FPI concentration (0.14% w/v) and using higher homogenization pressure and number of passes (60 MPa, two passes).  相似文献   

12.
The aim of this work was to investigate the effects of Iranian tragacanth gum (Astragalus gossypinus) (0.5, 1 wt.%), Whey protein isolate (WPI) (2, 4 wt.%) and acid oleic‐phase volume fraction (5, 10% v/v) on droplet size distribution, creaming index and rheological properties of emulsions with various compositions. Rheological investigations showed that both loss and storage modules increased with gum and oil contents. However, the viscoelastic behaviour was mainly governed by the gum concentration. Delta degree (storage and loss modules ratio) increased with frequency indicated that liquid like viscose behaviour dominates over solid like elastic behaviour. The shear‐thinning behaviour of all dispersions was successfully modelled with power law and Ellis models and Ellis model was founded as the better model to describe the flow behaviour of dispersions. Droplet size distribution was measured by light scattering; microscopic observations revealed a flocculated system. Increase in gum, WPI and oil contents resulted in decrease in creaming index of emulsions with dominant effect of gum concentration.  相似文献   

13.
The influence of pH and CaC12 on the rheology and physical stability of emulsions stabilized by whey protein isolate (WPI) has been studied. The particle size, creaming index and shear viscosity of 10 wt% soy bean oil-in-water emulsions (d=0.55 μm) were measured with varying pH (3, 5 and 7) and CaC12 concentration (0–150 mM). In the absence of CaCl2 extensive droplet aggregation occurred around the isoelectic point of the whey proteins (4<pH<6) because of their low electrical charge. In the presence of CaC12, extensive droplet aggregation, viscosity enhancement and creaming instability occurred at pH 7 for CaC12>3 mM. These effects were much less pronounced in emulsions at pH 3 even at 150 mM CaC12. Droplet aggregation, creaming and viscosity of emulsions at pH 5 were fairly independent of CaC12 concentration. Droplet aggregation was induced by CaC12 probably because of the reduction in electrostatic repulsion between droplets. Re-stabilization of oil-in-water emulsions at high CaC12 concentrations was not observed in this study.  相似文献   

14.
The objective of this study was to obtain additional information on the influence of different β-glucan preparations, i.e. curdlan (CL), barley (BG), oat (OG), and yeast (YG) β-glucans, on the physical and rheological properties of egg yolk stabilized oil-in-water emulsions containing 20% oil. The emulsion without β-glucan (REF) was also prepared as a reference. Addition of CL and OG increased emulsion oil droplet sizes, whereas BG and YG showed no effect. Emulsion microstructures revealed that β-glucans induced flocculation of the oil droplet in the following order: CL > BG ≈ OG > YG. Dynamic oscillatory shear tests indicated that all emulsions exhibited weak gel-like characteristics which were enhanced by β-glucans addition as evidenced by an increase in G′ and a decrease in tan δ values. Flow tests showed that β-glucans enhanced thixotropy and yield stress of the emulsions. Stability tests demonstrated that β-glucans addition improved creaming stability of the emulsions during storage possibly due to an increase in viscosity of the continuous phase and/or a formation of a three-dimensional droplet network. CL exhibited the most pronounced effects on the aforementioned properties of emulsions compared to the other β-glucans tested. YG gave emulsion with higher viscoelastic properties and yield stress but lower stability than those made with BG or OG, indicating complex relationship between rheology and stability of these emulsion systems.  相似文献   

15.
The influence of the cationic amino polysaccharide chitosan content (0–0.5%) on particle size distribution, creaming stability, apparent viscosity, and microstructure of oil-in-water emulsions (40% of rapeseed oil) containing whey protein isolate (WPI) (4%) at pH 3 was investigated. The emulsifying properties, apparent viscosity and phase separation behaviour of aqueous WPI/chitosan mixture at pH 3 were also studied. The interface tension data showed that WPI/chitosan mixture had a slightly higher emulsifying activity than had whey protein alone. An increase in chitosan content resulted in a decreased average particle size, higher viscosity and increased creaming stability of emulsions. The microstructure analysis indicated that increasing concentration of chitosan resulted in the formation of a flocculated droplet network. This behaviour of acidic model emulsions containing WPI and chitosan was explained by a flocculation phenomenon.  相似文献   

16.
Coconut cream protein (CCP) fractions were isolated from coconuts using two different isolation procedures: isoelectric precipitation (CCP1-fraction) and freeze–thaw treatment (CCP2-fraction). The ability of these protein fractions to form and stabilize oil-in-water emulsions was compared with that of whey protein isolate (WPI). Protein solubility was a minimum at ∼pH 4, 4.5 and 5 for CCP1, CCP2, and WPI, respectively, and decreased with increasing salt concentration (0–200 mM NaCl) for the coconut proteins. All of the proteins studied were surface active, but WPI was more surface active than the two coconut cream proteins. The two coconut cream proteins were used to prepare 10 wt% corn oil-in-water emulsions (pH 6.2, 5 mM phosphate buffer). CCP2 emulsions had smaller mean droplet diameters (d32  2 μm) than CCP1 emulsions (d32  5 μm). Corn oil-in-water emulsions (10 wt%) stabilized by 0.2 wt% CCP2 and WPI were prepared with different pH values (3–8), salt concentrations (0–500 mM NaCl) and thermal treatments (50–90 °C for 30 min). Considerable droplet flocculation occurred in the emulsions near the isoelectric point of the proteins: CCP2 (pH  4.3); WPI (pH  4.8). Emulsions with monomodal particle size distributions, small mean droplet diameters, and good creaming stability could be produced at pH 7 for WPI, but CCP2 produced bimodal distributions at this pH. The CCP2 and WPI emulsions remained relatively stable to droplet aggregation and creaming at NaCl concentrations ⩽50 and ⩽100 mM, respectively. In the absence of salt, both CCP2 and WPI emulsions were quite stable to thermal treatments (50–90 °C for 30 min).  相似文献   

17.
Corn oil-in-water emulsions (19.6 wt%; d32~ 0.6 μm) stabilized by 2 wt% whey protein isolate (WPI) were prepared with a range of pH (3–7) and salt concentrations (0–100 mM NaCl). These emulsions were heated between 30 and 90°C and their particle size distribution, rheological properties and susceptibility to creaming measured. Emulsions had a paste-like texture around the isoelectric point of WPI (~φ 5) at all temperatures, but tended to remain fluid-like at pH >6 or <4. Heating caused flocculation in pH 7 emulsions between 70 and 80°C (especially at high salt concentrations), but had little effect on pH 3 emulsions. Flocculation increased emulsion viscosity and creaming. Results were interpreted in terms of colloidal interactions between droplets.  相似文献   

18.
ABSTRACT: In this study we tried to prepare stable water-in-oil-in-water (W/O/W) emulsions using polyglycerol polyricinoleate (PGPR) as a hydrophobic emulsifier and whey protein isolate (WPI) as a hydrophilic emulsifier. At first, water-in-oil (W/O) emulsions was prepared, and then 40 wt% of this W/O emulsion was homogenized with 60 wt% aqueous solution of different WPI contents (2, 4, and 6 wt% WPI) using a high-pressure homogenizer (14 and 22 MPa) to produce W/O/W emulsions. The mean size of final W/O/W droplets ranged from 3.3 to 9.9 μm in diameter depending on the concentrations of PGPR and WPI. It was shown that most of the W/O/W droplets were small (<5 μm) in size but a small population of large oil droplets (d > 20 μm) was also occasionally observed. W/O/W emulsions prepared at the homogenization pressure of 22 MPa had a larger mean droplet size than that prepared at 14 MPa, and showed a microstructure consisting of mainly approximately 6 to 7-μm droplets. When a water-soluble dye PTSA as a model ingredient was loaded in the inner water phase, all W/O/W emulsions showed a high encapsulation efficiency of the dye (>90%) in the inner water phase. Even after 2 wk of storage, >90% of the encapsulated dye still remained in the inner water phase; however, severe droplet aggregation was observed at relatively high PGPR and WPI concentrations.  相似文献   

19.
Relatively concentrated (40 wt%) O/W emulsions formulated with high-oleic sunflower oil as disperse phase, potato protein isolate as emulsifier and chitosan as stabiliser were prepared by rotor–stator/high-pressure valve/rotor–stator homogenization. The influence of chitosan concentration on the physical stability of emulsions was studied in (0.25–1) wt% range by visual inspection, rheological and microstructural techniques. Steady shear flow curves were sensitive to the occurrence of creaming upon the rise of zero-shear viscosity values. The effect of increasing concentration of chitosan on the zero-shear viscosity turned out to be dependent on emulsion ageing and always resulted in a stepwise increase of the critical shear rate for the onset of shear thinning flow. The critical oscillatory shear stress for the onset of non-linear viscoelastic behaviour was more sensitive than the critical shear rate to detect creaming in emulsions. Mechanical spectra are definitely demonstrated to be the most powerful tool to detect not only creaming but also oil droplet flocculation on account of changes in the plateau relaxation zone. CSLM micrographs supported the interpretation of dynamic viscoelastic results, especially when flocculation as well as coalescence took place. Cryo-SEM micrographs evidenced the formation of increasingly denser protein–polysaccharide networks with chitosan concentration and the fact that the latter governs the microstructure of the emulsion when reaches 1 wt% concentration promoting enhanced physical stability.  相似文献   

20.
The influence of chitosan concentration (0–0.3 wt%) and molecular weight (120, 250 and 342.5 kDa) on the physical stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions was studied. The ζ-potential, droplet size, creaming stability, free fatty acids and glucosamine released was measured for the emulsions when they were subjected to an in vitro digestion model. The ζ-potential of the oil droplets in lecithin-chitosan stabilized emulsions changed from positive (≈+53 mV) to negative and the emulsions were unstable to droplet aggregation for all chitosan concentrations and molecular weights used after being subjected to the digestion model. The amount of free fatty acid and glucosamine released per unit amount of emulsion was higher when pancreatic lipase was included in the digestion model. These results suggest that lecithin-chitosan coated droplets can be degraded by lipase under simulated gastrointestinal conditions. Consequently, chitosan coated lipid droplets may serve as useful carriers for the delivery of bioactive lipophilic nutraceuticals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号