首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of o/w emulsions stabilized with 1%w/v common bean (Phaseolus vulgaris L.), V or scarlet runner bean (P. coccineus L.), Coc extracted by isoelectric precipitation or ultrafiltration, at pH 7.0 and 5.5, with the addition of Arabic gum, locust bean gum, xanthan gum and a mixture of xanthan gum–locust bean gum (0.1 %w/v and 0.25 %w/v) are studied. The stability of emulsions was evaluated on the basis of oil droplet size, creaming, viscosity and protein adsorption measurements. The addition of Arabic gum, caused an increase in D[4,3] values and a decrease in the amount of protein adsorbed at the interface. The addition of locust bean gum in some emulsions reduced the amount of protein adsorbed. The addition of xanthan and to a less extend of the polysaccharide mixture, promoted a decrease in D[4,3]. So, emulsion stability was affected by the polysaccharide nature. Differences were also observed with respect to the protein nature, the method of its preparation and emulsion's pH. All polysaccharides enhanced the emulsions viscosity with xanthan and xanthan–locust bean gum exhibiting the higher values. V isolates and isoelectricaly precipitated isolates of both V, Coc showed higher viscosity values. The stability was enhanced by the increase of the viscosity of the continuous phase and the creation of a network, which prevents the oil droplets from coalescence.  相似文献   

2.
Xanthan and locust bean gums are polysaccharides able to produce aqueous solutions with high viscosity and non‐Newtonian behaviour. When these solutions are mixed a dramatic increase on viscosity is observed, much greater than the combined viscosity of the separated polysaccharide solutions. In this work the influences of different variables on the viscosity of solutions of mixtures of xanthan/locust bean gum have been studied. Total polysaccharide concentration, xanthan and locust bean ratio on mixture and temperature at which the gum was dissolved (dissolution temperature) for both xanthan and locust bean gums have been considered. Under these different operational mixture conditions shear rate and time have also been considered to describe the rheological behaviour of the solutions studied. The high viscosity increase observed in these mixtures is due to the interaction between xanthan gum and locust bean gum molecules. This interaction takes place between the side chains of xanthan and the backbone of the locust bean gum. Both xanthan molecule conformation in solution – tertiary structure – and locust bean gum structure show great influence on the final viscosity of the solution mixtures. Xanthan conformation changes with temperature, going from ordered structures to disordered or chaotic ones. Locust bean gum composition changes with dissolution temperature, showing a dissolved galactose/mannose ratio reduction when temperature increases, ie the smooth regions – zones without galactose radicals – are predominantly dissolved. The highest viscosity was obtained for the solution mixture with a total polysaccharide concentration of 1.5 kg m−3 and a xanthan/locust ratio of 2:4 (w/w) and when xanthan gum and locust bean gum were dissolved at 40°C and 80°C, respectively. © 1999 Society of Chemical Industry  相似文献   

3.
The effect of κ-carrageenan (0, 0.025, 0.05%) on phase separation between polysaccharides (0.36% of locust bean gum (LBG), guar gum, or xanthan gum) and milk proteins (from 10.5% skim milk powder) in solution was studied. Xanthan gum was seen to be the most incompatible with milk proteins, followed by guar gum and LBG. Casein micelles were more incompatible with all polysaccharides than whey proteins. Whereas at either concentration κ-carrageenan inhibited visual phase separation, it was seen by transmission electron microscopy that samples with κ-carrageenan showed microscopic phase separation. Samples with 0.05% κ-carrageenan and either LBG or guar gum and all samples with xanthan gum could be described rheologically as weak gels, while those with no or 0.025% κ-carrageenan and either LBG or guar gum could be described as concentrated solutions. Thus, no correlation was seen between the inhibition of macroscopic phase separation by κ-carrageenan and the formation of a weak gel in solution.  相似文献   

4.
Gels made only from whey protein isolate (WPI) stiffened over the first few days of storage, after which the textural properties remained nearly constant. However, protein gels containing WPI microparticles, at the same total protein content, stiffened over a longer period than those without microparticles. This stiffening was suggested to be the result of rearrangement of crosslinks in the gel. Addition of particles induces additional effects leading to water distribution between the protein particles and continuous phase. The stiffness change over time was different for gels made from a mixture of locust bean gum and xanthan gum containing microparticles. The stiffness of matrix gel and of gels containing 20% (w/w) microparticles was rather stable over time; microscopy analysis of these gels showed that particle size was constant after 72 h storage. Nevertheless, changes were observed in small deformation; this might be the consequence of slow rearrangements within the protein particles.  相似文献   

5.
The influence of legume proteins from lupin, pea and fababean on the formation of gels prepared by heat treatment in the absence or presence of xanthan gum, locust bean gum and NaCl was investigated. The resulting fracture and texture properties of gels not only are associated with the heating process used to form the gel but also depend on the conformational aspects of xanthan–locust bean gum in admixture with legume proteins, which after 10 days of aging reinforce the system. The fracture and textural properties are explained in terms of the effect of the protein–polysaccharide molecular structure and physicochemical conditions applied in the gel system during the gel preparation and measurements. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Polysaccharides guar galactomannan (guar gum), locust bean galactomannan (locust bean gum) and tamarind galactoxyloglucan were selectively oxidized by galactose oxidase. The degrees of oxidation of the products were 18-28% for guar galactomannan, 10-16% for locust bean galactomannan and 12-14% for tamarind galactoxyloglucan, calculated from the ratio of oxidized galactose units and total carbohydrates. The rheological properties of the unoxidized and oxidized polysaccharide solutions were investigated by determining their viscosities, storage and loss moduli, and temperature dependence of moduli from 20 °C to 90 °C. All the studied oxidized polysaccharides formed hydrogels throughout the entire temperature range. Concentration (0.2-1% w/v) and degree of oxidation had an effect on the gel formation. The oxidized galactomannans formed stable gels already in low concentrations, such as 0.2-0.4% w/v, while oxidized galactoxyloglucan required a concentration of 0.8% w/v to be stable up to 90 °C. The oxidized polysaccharide hydrogels are highly potential materials for food and medical applications requiring thermal stability.  相似文献   

7.
朱建华 《现代食品科技》2012,28(12):1612-1616
通过超声处理大豆11S蛋白-刺槐豆胶共混溶液,并随后添加葡萄糖酸内酯(GDL)冷致酸化制备刺槐豆胶增强大豆11S蛋白共混复合凝胶材料。结果表明,与对照样相比,经47.5 W功率超声强度处理4 min后,共混凝胶的强度有显著提高,且刺槐豆胶分散相所占孔隙率和平均孔隙直径分别降低了50.6%和34.6%。随超声处理功率的增加,孔隙率和孔隙直径进一步降低,表明有效改善了刺槐豆胶与大豆11S蛋白的相容性。共混凝胶强度随超声处理功率增加呈先增加后降低趋势,且超声处理样共混凝胶强度均大于对照样。  相似文献   

8.
The microstructure of acid skim milk gels (14% w/w milk protein low heat powder) with or without addition of locust bean gum (LBG), xanthan gum (XG) and LBG/XG blends was determined by transmission electron microscopy (TEM), phase-contrast light microscopy (PCLM) and scanning electron microscopy (SEM). Three polysaccharide concentrations (0.001%, 0.02% and 0.1%, w/w) were used for binary mixtures. In the case of ternary mixtures, three LBG/XG weight ratios were used (4/16, 11/9 and 16/4) at 0.02% total polysaccharide concentration. Control acid skim milk gels were structured by a homogeneous network of casein particles (0.1–0.7 μm in diameter) and clusters immobilizing whey in small pores (1–5 μm in diameter). Filamentous structures and small aggregates were observed at the surface of casein particles. Low concentration of LBG or XG (0.001% w/w) did not affect markedly the microstructure of acid skim milk gels. Conversely, LBG or XG at 0.02 or 0.1% concentration and LBG/XG blends at the three ratios selected had a great influence on the gel microstructure. Although the size and surface structure of the casein particles were not modified by the presence of polysaccharides, the primary casein network appeared very compact with a decrease of pore size and a large increase in the porosity of the network at the supramolecular level (sponge-like morphology). The effect is stronger for gels containing LBG and XG used at higher concentration and less apparent for gels containing LBG/XG blends. Skim milk/XG gels were highly organized into fibrous structures whereas skim milk/LBG gels were more heterogeneous. These structures were discussed in the light of volume-exclusion effects (demixing) and specific interactions between casein micelles and polysaccharides. At the three weight ratios, skim milk/LBG/XG gels displayed both jagged “coral-like”, “veil-like” and filamentous structures. These structures could originate from a secondary network constituted by the known LBG/XG synergistic interactions.  相似文献   

9.
The gelling ability of whey proteins can be changed by limited hydrolysis and by the addition of other components such as polysaccharides. In this work the effect of the concentration of locust bean gum (LBG) on the heat-set gelation of aqueous whey protein hydrolysates (10% w/w) from pepsin and trypsin was assessed at pH 7.0. Whey protein concentrate (WPC) mild hydrolysis (up to 2.5% in the case of pepsin and 1.0% in the case of trypsin) ameliorates the gelling ability. The WPC synergism with LBG is affected by the protein hydrolysis. For a WPC concentration of 10% (w/w), no maximum value was found in the G′ dependence on LBG content in the case of the hydrolysates, unlike the intact WPC. However, for higher protein concentrations, the behaviour of gels from whey proteins or whey protein hydrolysates towards the presence of LBG becomes very similar. In this case, a small amount of LBG in the presence of salt leads to a big enhancement in the gel strength. Further increases in the LBG concentration led to a decrease in the gel strength.  相似文献   

10.
The effects of protein concentration and locust bean gum (LBG) addition on the mechanical properties, microstructure and water holding capacity of acidified soy protein (SPI) gels were studied. The protein was employed in two different states: (i) native and (ii) heat denatured. A slow acidification rate was induced in both systems by applying glucono‐δ‐lactone (GDL). The results indicated that the gels of native SPI were weaker, less deformable and showed lower water holding capacity than the gels of heat‐denatured SPI. The LBG addition led to an increase in the strength and water holding capacity of SPI gels, independent of the protein state (native or denatured). These results indicated that the properties of texture and water holding capacity of the SPI acid gels can be modulated by the process conditions or by the addition of other ingredients, such as polysaccharides.  相似文献   

11.
The objective of the work was to study foaming properties (foam overrun, drainage rate and collapse stability) of soy protein and their hydrolysates as affected by polysaccharides. As starting material a sample of commercial soy protein isolate was used (SP) and hydrolysates of 0.4, 5.0 and 5.2% degree of hydrolysis (DH) were produced by an enzymatic reaction. The polysaccharides added were xanthan, λ and κ-carrageenan, guar, locust bean gum and hydroxypropylmethylcelluloses as surface-active polysaccharides.  相似文献   

12.
Mixed cold-set whey protein isolate (WPI)–flaxseed gum (FG) gels, induced by the addition of CaCl2 or NaCl at fixed ionic strength (150 mM), were evaluated with respect to their mechanical properties, water-holding capacity (WHC) and SEM microscopy. They were prepared by mixing FG and thermally denatured (90 °C/30 min) WPI solutions at room temperature, but the gels were formed at 10 °C using two methods of salt incorporation: diffusion through dialysis membranes and direct addition. The mixed systems formed using dialysis membranes showed phase separation with the development of two (axial) layers, and the CaCl2-induced gels presented radial phase separation. In general the CaCl2-induced gels were less discontinuous, stronger, and showing lower WHC and deformability than the NaCl-induced gels. An increase in the FG concentration reduced the gel strength and WHC for both systems, which was associated with a prevailing phase separation between the biopolymers over the gelation process. Using direct salt addition, apparently none of the mixed gels showed macroscopic phase separation, but the NaCl-induced gels showed much higher hardness and elasticity than the CaCl2-induced gels. Since the gelation process occurred more quickly by direct salt addition, and more effectively for the divalent salts, the more fragile structure of the CaCl2-induced gels was a consequence of disruption of the cross-link interactions of the aggregates during the agitation used to homogenize the salt added.  相似文献   

13.
The stability of oil-in-water, water-in-water and multiple emulsions containing sodium caseinate (Na-CN) and/or locust bean gum (LBG) at pH 5.5 was investigated with different compositions using a visual analysis (creaming and/or phase separation), optical microscopy and rheological measurements. Oil-in-water emulsions (O/W) were produced by high pressure homogenization, which promoted the formation of very small droplets (∼0.4 μm) and hindered the destabilization process. In the second step of this study, a visual phase diagram was constructed in order to identify the concentrations of sodium caseinate (Na-CN) and locust bean gum (LBG) that led to phase separation at pH 5.5. A mixed solution composed of 3% (w/v) Na-CN and 0.3% (w/v) LBG was chosen to produce the water-in-water and multiple emulsions. After centrifugation, the solution was separated into an upper phase rich in polysaccharide (PS) and a bottom phase rich in protein (PR), which were mixed in different proportions (1:3, 1:1, 3:1), forming the water-in-water (W/W) emulsions. The stability, microstructure and rheological properties of the W/W emulsions depended strongly on the composition of the biopolymers. An increase in the polysaccharide concentration in the W/W emulsions led to the production of more viscous and stable systems. Multiple emulsions with different characteristics were prepared and also depended on the biopolymer composition. The system with the highest polysaccharide content was the only one that showed an O/W/W structure, while the others presented the microstructure of an O/W-W/W emulsion.  相似文献   

14.
Lo CT  Ramsden L 《Die Nahrung》2000,44(3):211-214
Three starches (maize, rice and wheat), and the two non-starch polysaccharides xanthan and locust bean gum galactomannan (LBG) were examined in gel and dough systems for texture and stability properties during freezing and low temperature storage. Xanthan and LBG were found to confer increased resistance to freeze/thaw cycling on rice starch gels but the non-starch polysaccharides had little effect on the performance of maize and wheat starch gels or on wheat dough.  相似文献   

15.
Cold-set gels of whey protein isolate (WPI) and of WPI plus tara gum (TG) were produced through the addition of magnesium chloride to heat-denatured (HD) WPI and WPI+TG solutions. The flow behaviour of the WPI, TG, and WPI+TG samples was analyzed: WPI solutions exhibit Newtonian behavior while the behavior of the TG and WPI+TG solutions can be described through the Cross and Carreau models. The mechanical characterization of the cold-set gels was done through puncture tests, and the Young's modulus for each cold-set gel was obtained. Statistical analysis of the mechanical data was made according to the Marquadt-Levenberg algorithm.  相似文献   

16.
Whey proteins (WP) and polysaccharides are two gelling biopolymers used in the food industry for their wide range of rheological and textural properties. Mixed gels containing more than one gelling agent are usually classified into three types: interpenetrating, coupled, and phase-separated networks. Large deformation behavior of whey protein gels mixed with polysaccharides is presented. pH, and the concentration and nature of the cations added in the system, affect both protein and polysaccharide gels. These factors will also modify the mixing behavior of protein-polysaccharide solutions. The effect of cations and pH are respectively explained using WP/κ-carrageenan and WP/pectin systems. Under the conditions studied, two types of mixed systems were obtained: one with two gelling biopolymers (WP/κ-carrageenan), and the other where protein is the only gelling biopolymer (WP/pectin). Conditions favoring incompatibility can lead to spherical inclusions of whey protein.  相似文献   

17.
The surface tension of protein isolates from common bean (Phaseolus vulgaris L.) and scarlet runner bean (Phaseolus coccineus L.), prepared by isoelectric precipitation and ultrafiltration was evaluated, with respect to protein concentration (0.001–0.1% w/v) and pH (pH 4.5, 5.5, 7.0 and 8.0). Surface tension was most reduced, and with a higher rate of reduction at higher protein concentration and at pH 8.0. Foams (1, 2% w/v protein), at the same pH values, with and without the addition of polysaccharides, were studied. The proteins’ foaming behaviour was related to their adsorption behaviour. Arabic gum, locust bean gum (0.1% and 0.25% w/v), xanthan gum and a xanthan/locust bean gum mixture (0.1% w/v) had a positive effect on foam creation. All polysaccharides increased foam stability, probably due to the viscosity increase and to the creation of a network, which prevents the air droplets from coalescence. Isolates from P. coccineus and isolates obtained by ultrafiltration seemed to exhibit better foaming properties.  相似文献   

18.
Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at concentrations that provide adequate viscosity, are needed to achieve stability while also maintaining dispersion overrun capabilities.  相似文献   

19.
This research investigated the multi-scale characteristics of potato starch gel (PSG) with different addition ratios of xanthan gum (XG) and locust bean gum (LBG). These characteristics are closely related and had significant impacts on 3D printing performance. Both xanthan gum and locust bean gum were able to increase the apparent viscosity, storage modulus (G′) and loss modulus (G″) of the blended gel system to varying degrees. Large amplitude oscillation shear (LAOS) was used to detect slight rheological differences led by microstructure changes. The critical strain values of the blended gel system rose as the addition ratio of locust bean gum increased. At the same time, the elastic and viscous Lissajous curves could characterize the viscoelastic changes under large strains. Fourier transforms infrared spectroscopy (FT-IR) illustrated that locust bean gum could strengthen the hydrogen bonds so that the gel had stronger mechanical properties compared with the addition of xanthan gum. Scanning electron microscopy (SEM) could observe the changes in the microstructure of the blended gel systems with addition of different addition ratios of gums. From the perspectives of 3D printing results and data analysis, the appropriate amount of xanthan gum improved the fineness and fluidity of the gels by virtue of its lubricating and coating characteristics, while the locust bean gum enabled them to have stronger shape retention abilities and better performances of resisting compressed deformation.  相似文献   

20.
Non‐starch polysaccharides (NSPs) and celite (used as inert filler) were incorporated into wheat flour and wheat starch paste preparations at levels of 1, 2.5, and 5% in both addition and replacement modes. Pasting properties of gums were compared using a Rapid Visco Analyser. Use of guar gum and locust bean gum elevated the peak and final viscosities of the resulting pastes (when used in either addition or replacement modes), whereas arabic gum significantly reduced the peak and final viscosity properties of the pastes. Samples which comprised wheat starch yielded higher peak and final viscosity characteristics compared to wheat flour containing samples, however higher breakdown and setback values were observed for samples using wheat flour as a base compared to wheat starch. The firmness of the gels (as determined using a texture analyser) increased with the use of wheat starch compared to wheat flour. Little significant difference was observed between NSP used and mode of application (replacement or addition). In vitro starch degradation was conducted on the wheat flour gels. Guar gum and locust bean gum reduced the amount of starch degradation in these gels, whereas arabic gum and celite increased the amount of starch hydrolysis (or were similar to the control). The rate of starch hydrolysis appears to be related to the viscosity altering behaviour of the NSPs in a starch‐rich system. The results indicate that selection of NSPs is important as gum arabic has the potential to increase starch hydrolysis compared to the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号