首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The influence of emulsion composition (i.e. Arabic gum, xanthan gum and, orange oil) and structural emulsion properties (i.e. average droplet size and apparent viscosity) on equilibrium headspace concentration of beverage emulsions was investigated. Increase in average droplet size led to increase the equilibrium headspace concentration of more hydrophilic volatile compounds (i.e. lower log P) such as ethyl acetate and octanal, but decrease in more hydrophobic volatile compounds such as 3-carene, myrcene and limonene. In most cases, apparent viscosity had significant positive effect on equilibrium headspace concentration. Principle component analysis (PCA) score discriminated the beverage emulsions containing the same orange oil content but different contents of emulsifiers in different classes, thus indicating the significant (p < 0.05) effect of emulsifier fraction on equilibrium headspace concentration. Beverage emulsion containing 22.2% (w/w) Arabic gum, 0.52% (w/w) xanthan gum and 14.21% (w/w) orange oil was estimated to provide the highest equilibrium headspace concentration.  相似文献   

2.
The influence of main emulsion components namely Arabic gum (13–20% w/w), xanthan gum (0.3–0.20% w/w) and orange oil (10–14% w/w) on semi-quantitative headspace analysis of target volatile flavor compounds released from a model orange beverage (diluted orange beverage emulsion) was evaluated by using a three-factor circumscribed central composite design (CCCD). For optimization procedure, the peak area of 13 volatile flavor compounds (i.e. ethyl acetate, α-pinene, ethyl butyrate, β-pinene, 3-carene, myrcene, limonene, γ-terpinene, octanal, decanal, linalool, neral and geranial) were considered as response variables. The response surface analysis exhibited that the significant (p < 0.05) second-order polynomial regression equations were successfully fitted for all response variables except for ethyl butyrate. A satisfactory coefficient of determination (R2) ranged from 0.831 to 0.969 (>0.8) was obtained for the response variables studied. No significant (p > 0.05) lack of fit was indicated for the reduced models except for the models fitted for limonene and linalool. This observation confirmed an accurate fitness of the reduced response surface models to the experimental data. The multiple response optimizations indicated that an orange beverage emulsion containing 15.87% (w/w) Arabic gum, 0.5% (w/w) xanthan gum and 10% (w/w) orange oil was predicted to provide the minimum overall flavor release.  相似文献   

3.
The effect of two emulsion components namely glycerol (0.5, 1 and 1.5% w/w) and vegetable oil (2, 3 and 4% w/w) on ζ-potential, conductivity, pH, apparent viscosity, fluid behavior, turbidity and cloud stability of orange beverage emulsion was investigated. The negatively charged ζ-potential significantly (p < 0.05) increased with increasing glycerol content. A slight increase in ζ-potential was observed by adding 2% (w/w) vegetable oil to the emulsion formulation, while it was slightly decreased when vegetable oil content was increased up to 4% (w/w). Apparent viscosity, pH and turbidity of orange beverage emulsions significantly (p < 0.05) increased when the concentration of glycerol or vegetable oil was increased. All prepared beverage emulsions behaved as non-Newtonian (i.e., pseudoplastic or shear thinning) fluids. The addition of different concentration levels of both supplementary emulsion components except for 0.5% (w/w) glycerol significantly (p < 0.05) improved the cloud stability of orange beverage emulsions.  相似文献   

4.
The effect of Arabic gum content (5-10% w/w) and walnut-oil concentration (3-6% w/w) on properties of prepared walnut oil/water emulsion, including turbidity loss rate, density, size index, particle size and stability, was investigated using response surface methodology (RSM). For each response, a second-order polynomial model with high coefficient of determination (R2) values ranging from 0.907 to 0.989 was developed using multiple linear regression analysis. The lack of significant difference between the experimental and predicted values proved the adequacy of response surface equations for describing the physical changes of emulsions. An increase of Arabic gum content in range and initial concentration of walnut oil were associated with high emulsion stability and minimum droplet size. It can be concluded that RSM can determine the most suitable formulation (3% w/w walnut oil and 9.62% w/w Arabic gum) to achieve the highest stability in a developed beverage emulsion based on walnut oil.  相似文献   

5.
The properties of o/w emulsions stabilized with 1%w/v common bean (Phaseolus vulgaris L.), V or scarlet runner bean (P. coccineus L.), Coc extracted by isoelectric precipitation or ultrafiltration, at pH 7.0 and 5.5, with the addition of Arabic gum, locust bean gum, xanthan gum and a mixture of xanthan gum–locust bean gum (0.1 %w/v and 0.25 %w/v) are studied. The stability of emulsions was evaluated on the basis of oil droplet size, creaming, viscosity and protein adsorption measurements. The addition of Arabic gum, caused an increase in D[4,3] values and a decrease in the amount of protein adsorbed at the interface. The addition of locust bean gum in some emulsions reduced the amount of protein adsorbed. The addition of xanthan and to a less extend of the polysaccharide mixture, promoted a decrease in D[4,3]. So, emulsion stability was affected by the polysaccharide nature. Differences were also observed with respect to the protein nature, the method of its preparation and emulsion's pH. All polysaccharides enhanced the emulsions viscosity with xanthan and xanthan–locust bean gum exhibiting the higher values. V isolates and isoelectricaly precipitated isolates of both V, Coc showed higher viscosity values. The stability was enhanced by the increase of the viscosity of the continuous phase and the creation of a network, which prevents the oil droplets from coalescence.  相似文献   

6.
The surface tension of protein isolates from common bean (Phaseolus vulgaris L.) and scarlet runner bean (Phaseolus coccineus L.), prepared by isoelectric precipitation and ultrafiltration was evaluated, with respect to protein concentration (0.001–0.1% w/v) and pH (pH 4.5, 5.5, 7.0 and 8.0). Surface tension was most reduced, and with a higher rate of reduction at higher protein concentration and at pH 8.0. Foams (1, 2% w/v protein), at the same pH values, with and without the addition of polysaccharides, were studied. The proteins’ foaming behaviour was related to their adsorption behaviour. Arabic gum, locust bean gum (0.1% and 0.25% w/v), xanthan gum and a xanthan/locust bean gum mixture (0.1% w/v) had a positive effect on foam creation. All polysaccharides increased foam stability, probably due to the viscosity increase and to the creation of a network, which prevents the air droplets from coalescence. Isolates from P. coccineus and isolates obtained by ultrafiltration seemed to exhibit better foaming properties.  相似文献   

7.
对影响乳状液稳定性的因素如乳化剂种类、乳化剂浓度、阿拉伯胶浓度、混合温度及混合时间等进行了研究。试验结果表明 ,香料乳状液稳定的优化条件是 :吐温 - 80用量 0 .8%、阿拉伯胶用量9.0 %、室温下混合搅拌 7min。  相似文献   

8.
制备黄原胶与面筋蛋白纳米粒协同稳的Pickering乳液,表征Pickering乳液的物理化学性能和微观结构。结果显示:通过黄原胶与面筋蛋白纳米粒协同作用,可制备出稳定性较好的Pickering乳液。低质量分数的黄原胶(0.2%)会促进乳析;当黄原胶质量分数不小于0.3%时,乳液于4 ℃贮存30 d仍无乳析现象;当黄原胶质量分数为1%时,贮存30 d乳液出现析油的现象。不同乳化顺序得到乳液的稳定性不同。乳液M-WG-XG(面筋蛋白纳米粒与玉米油乳化得粗乳液,然后加入黄原胶二次分散)的稳定性最好,同时乳液的平均粒径最小(21.4±0.314)μm。黄原胶的加入增大了乳液的净电荷,乳液的稳定性提高。共聚焦显微镜结果表明,乳液M-WG-XG液滴分布均匀,界面层呈现出多层结构。相比于其他方式制备的乳液,乳液M-WG-XG有更好的黏弹性和离子稳定性。  相似文献   

9.
Headspace solid-phase microextraction (HS-SPME) gas chromatography was used to analyze target flavor compounds in orange beverage emulsion. The effects of SPME fiber (PDMS 100 μm, CAR/PDMS 75 μm, PDMS/DVB 65 μm and DVB/CAR/PDMS 50/30 μm), adsorption temperature (25–45 °C), adsorption time (5–25 min), sample concentration (1–100%), sample amount (5–12.5 g), pH (2.5–9.5), salt type (K2CO3, Na2CO3, NaCl and Na2SO4), salt amounts (0–30%) and stirring mode were studied to develop HS-SPME condition for obtaining the highest extraction efficiency and aroma recovery. For the head space volatile extraction, the optimum conditions were: CAR/PDMS fiber, adsorption at 45 °C for 15 min, 5 g of diluted beverage emulsion (1:100), 15% (w/w) of NaCl with stirring and original pH 4. The main volatile flavor compounds were: limonene, 94.9%; myrcene, 1.2%; ethyl butyrate, 1.1%; γ-terpinene, 0.41%; linalool, 0.36%; 3-carene, 0.16%; decanal, 0.12%; ethyl acetate, 0.1%; 1-octanol, 0.06%; geranial, 0.05%; β-pinene, 0.04%; octanal, 0.03%; α-pinene, 0.03%; and neral, 0.03%. The linearity was very good in the considered concentration ranges (R2 ? 0.97). Average recoveries ranged from 88.3% to 121.7% and showed good accuracy for the proposed analytical method. Average relative standard deviation (RSD) for five replicate analyses was found to be less than 14%. The limit of detection (LOD) ranged from 0.06 to 2.27 mg/l for all volatile flavor compounds and confirmed the feasibility of the HS-SPME technique for headspace analysis of orange beverage emulsion. The method was successfully applied for headspace analysis of five commercial orange beverage emulsions.  相似文献   

10.
Our goal was to evaluate emulsion stability, droplet size analysis and rheological behavior of the emulsions prepared by a native biopolymer namely Angum gum (An) compared with Arabic gum (Ar) stabilized emulsions. After gum extraction, gum dispersions with maltodextrin were prepared in water (in 1-5% concentrations) and emulsified with 5% and 10% d-limonene using high pressure homogenization. Statistical analysis revealed a significant influence of gum type and gum concentration on emulsion stability at α = 0.05. Flavor level was not important statistically in emulsion stability but it was the only factor with a significant influence (P < 0.05) on surface tension of the emulsions. The results showed that Angum gum was superior to Arabic gum in stabilizing emulsions during storage. Also, rheological data revealed that Angum gum-emulsions’ behavior was following the Herschel-Bulkley model with higher viscosities compared to Arabic gum emulsions, which could be the main reason of higher emulsion stabilities with this novel hydrocolloid.  相似文献   

11.
Gellan gum, a high molecular weight anionic linear polysaccharide produced by pure culture fermentation from Sphingomonas paucimobilis ATCC 31461 is used in a variety of food applications that are based on its unique gelling profile. The present work reports on the effective use of gellan gum on the oil uptake of a traditional Indian deep-fat fried product, sev that is based on chickpea flour. The effect of addition of gellan gum at 0.25–0.75% (w/w) (based on chickpea flour) on the dough texture, and that of the sev prepared was also evaluated using TA.XT2i Texture Analyzer. Addition of gellan gum at 0.25% (w/w) markedly reduced the oil content in the sev from 37.02% in the control to 27.91%. The reduction in oil content beyond 0.25% gellan gum addition was not significant (P = 0.05). Furthermore, while addition of gellan gum significantly altered the texture of dough, it did not significantly affect the texture of sev (P = 0.05). Addition of 0.25% gellan gum in combination with sodium alginate (0.25–1.00%), carboxymethylcellulose (0.25–1.00%) or soy protein isolate (2.5–10.0%) did not affect oil uptake significantly (P = 0.05) as compared to that prepared by the addition of 0.25% gellan gum alone.  相似文献   

12.
The aim of this study was to compare the efficiency of three different food‐grade emulsifiers to form and stabilise an orange oil‐in‐water emulsion. The emulsifier type and concentration had a profound effect on the initial particle size of the oil droplets with Tween 80 being the most effective in reducing the particle size (1% w/w, 1.88 ± 0.01 μm) followed by sodium caseinate (10% w/w, 2.14 ± 0.03 μm) and gum arabic (10% w/w, 4.10 ± 0.24 μm). The long‐term stability of the concentrated beverages was monitored using Turbiscan analysis. The Turbiscan stability indices after 4 weeks of storage followed the order: Tween 80 (1.70 ± 0.08) < gum arabic (4.83 ± 0.53) < sodium caseinate (6.20 ± 1.56). The protein emulsifier was more capable to control the oxidation process, and this was attributed to the excess amount of emulsifier present in the aqueous phase. This study provides useful insights into the formulation of flavour emulsions by the beverage industry.  相似文献   

13.
The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI) were investigated in this study. Flaxseed gum with 0.05-0.5% (w/v) concentration was used together with 1% (w/v) SPI to emulsify 10% (v/v) soybean oil. The emulsion was analyzed for emulsion activity (turbidity), stability, particle size, surface charge, and rheological properties. The turbidity and absolute zeta-potential values decreased initially by the addition of flaxseed gum and subsequently increased with further increase in the gum concentration to reach their peak around 0.35% (w/v) gum. The particle size of the emulsion decreased and reached a minimum value at 0.1% (w/v) gum concentration. Any increase in gum concentration beyond this value resulted into increase in the particle size. This study would help to widen the application of SPI and flaxseed gum mixture, and also contribute to the understanding of protein-gum interaction in emulsion.  相似文献   

14.
This study investigated the possible relationship between the encapsulation variables, namely serine protease content (9–50 mg/ml, X1), Arabic gum (0.2–10% (w/w), X2), maltodextrin (2–5% (w/w), X3) and calcium chloride (1.3–5.5% (w/w), X4) on the enzymatic properties of encapsulated serine protease. The study demonstrated that Arabic gum, maltodextrin and calcium chloride, as coating agents, protected serine protease from activity loss during freeze-drying. The overall optimum region resulted in a suitable freeze drying condition with a yield of 92% for the encapsulated serine protease, were obtained using 29.5 mg/ml serine protease content, 5.1% (w/w) Arabic gum, 3.5% (w/w) maltodextrin and 3.4% (w/w) calcium chloride. It was found that the interaction effect of Arabic gum and calcium chloride improved the serine protease activity, and Arabic gum was the most effective amongst the examined coating agents. Thus, Arabic gum should be considered as potential protection in freeze drying of serine protease.  相似文献   

15.
Xanthan gum (GX) and acacia gum (GA) are widely employed in food industry, indeed xanthan gum is used for its thickening properties of aqueous solutions and acacia gum for its emulsifying ability. The present work aims to study the effect of GX–GA mixtures on the stability of oil-in-water (o/w) emulsions; attention is particularly focused on the impact of the chemical structure of each gum. Emulsion stability has been evaluated by monitoring the evolution of droplet size and viscometric properties over time when submitted to accelerated ageing conditions. On the one hand results show that the higher the ArabinoGalactanProtein (AGP) content the more stable the emulsion as observed when GA is used alone. On the other hand, we proved, unexpectedly, that the most viscous aqueous phase does not exhibit the best emulsion stability. Besides, we clearly evidenced the presence of specific interactions between GX and GA in both emulsion and aqueous solution, these interactions being governed by the gums chemical composition.  相似文献   

16.
The effect of xanthan gum at different concentrations (0.2–0.6% w/w) on the rheological properties of sweet potato starch (SPS) pastes was evaluated under steady and dynamic shear conditions. The presence of xanthan resulted in an increase in the consistency index and vane yield stress of SPS. The effect of temperature on the apparent viscosity of SPS–xanthan mixtures is well described by the Arrhenius equation. Dynamic moduli (G′, G″, and η*) values of the mixtures increased with an increase in xanthan concentration while the tan δ values decreased. The addition of xanthan appeared to contribute to the elastic properties of the weak network of the SPS pastes. The structure development rate constant (k) of gelation during ageing was strongly influenced by the presence of xanthan. This suggests that the phase separation process caused by the incompatibility phenomena between the amylose component in starch and xanthan can increase the elastic characteristics of the SPS–xanthan mixtures.  相似文献   

17.
Stability of beverage emulsion is measured by the rate at which the emulsion creams, flocculates or coalesces, and is generally dependent on rheology of water phase, difference in specific gravities of the two phases and droplet size/distribution of the emulsion. The effects of weighting agents (sucrose acetate isobutyrate and brominated vegetable oil) and xanthan gum on modified starch‐based emulsions were evaluated in this study. Emulsion was formed by addition of 9% coconut oil, in the presence or absence of weighting agents, into the water phase containing modified starch at 10, 12 or 14% without or with the addition of 0.3% xanthan gum. Stabilities of emulsions were evaluated both in the concentrated form used for storage and dilute form used in beverages. The addition of xanthan gum into the water phase decreased the flow behavior index (n) from 0.88 down to 0.31 and increased elastic modulus (G′) over 20 times at elevated frequency (ω = 50 rad/s) and elevated the stability of the emulsion. The xanthan gum‐added emulsion had smaller particle size and demonstrated 14 and 5 times slower phase separation compared to the emulsions without or with the addition of weighting agents, respectively. When the elastic modulus was larger than the viscous modulus (G′ > G″), the emulsions demonstrated greater stability. In dilute beverage solutions, creaming was observed in the absence of xanthan gum.  相似文献   

18.
In this study, the effect of carrier oils on the physicochemical properties of orange oil beverage emulsions was investigated. The beverage emulsions were prepared by soybean soluble polysaccharides (SSPS) using a two-stage processing of homogenization. Results showed that the presence of carrier oils could improve the physical properties of beverage emulsions, including droplet size, size distribution and turbidity, compared with only orange oil in oil phase of the beverage emulsion. And the effect of long chain triglycerides on the physical stabilities of beverage emulsions was significant (p < 0.05) than that with medium chain triglycerides (MCT). The oxidation rate of orange oil in the emulsion was faster compared to that of the orange oil/carrier oils in emulsions. However, the rheological properties of beverage emulsions were hardly dependent on the carrier oils. In addition, all the emulsions exhibited near-Newtonian fluid behavior. These findings revealed that the physicochemical properties of the beverage emulsions could be effectively improved by the presence of carrier oils.  相似文献   

19.
Xanthan gum is a water‐soluble extracellular polysaccharide that has gained widespread commercial use because of its strong pseudoplasticity and tolerance to high ionic strength, which bring unique rheological properties to solutions. This study compares and evaluates the emulsifying properties of oil‐in‐water (30:70 v/v) emulsions stabilized with lupin and soya protein isolates and medium molecular weight xanthan gum. The protein was obtained by an isoelectric precipitation method and the polysaccharide was produced by Xanthomonas campestris ATCC 1395 in batch culture in a laboratory fermenter (LBG medium) without pH control. The addition of xanthan gum in the emulsion formulation enhances emulsion stability through the phenomenon of thermodynamic incompatibility with the legume protein, resulting in an increase of the adsorbed protein at the interface. The emulsion stability is also enhanced by a network structure built by the polysaccharide in the bulk phase. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
黄原胶对酪蛋白酸钠乳状液稳定性的影响   总被引:2,自引:0,他引:2  
研究了一定pH条件下,黄原胶浓度及剪切稀化效应对酪蛋白酸钠乳状液稳定性的影响。结果表明,在酸性条件下,黄原胶无法抑制酪蛋白的变性沉淀,乳液在制备之初,即产生严重絮凝。在中性和弱碱性条件下,黄原胶在一定浓度范围内,诱发了乳状液的排斥絮凝;体系的pH显著影响了乳状液的稳定性,pH6条件下,较低的黄原胶浓度(0.2wt%)便可赋予乳状液良好的稳定性。均质过程大大降低了黄原胶的粘度,导致乳状液的稳定性下降,与添加未经均质处理的黄原胶相比,添加量增大近一倍,才能获得稳定的乳状液。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号