首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jun Xue 《LWT》2007,40(8):1459-1465
There is an increasing consumer preference for reduced oil content in fried food products. The amount of fat absorbed by deep fried foods can be modified using appropriate coatings such as batter and breading systems. Coatings also change the heat transfer characteristics of the composite products. The goal of this study was to determine some thermal properties of selected batter mixes that are commonly used for deep fat frying of chicken products. Three types of flour-based batter mixes were used. These were mixtures of wheat and rice (WR), wheat and corn (WC), and corn and rice (CR) flours with salt and different methylcellulose (MC) levels. The differential scanning calorimeter (DSC) was used to measure glass transition temperature (Tg), gelatinization temperature (TG), ice-melting temperature (Tm) and enthalpy (ΔHG) of the different batter formulations. Salt and MC greatly influenced the thermal properties of batter systems as they increased TG, but depressed Tm. Adding rice and corn flours to wheat flour based batters apparently changed the thermal properties. Corn flour based batters required considerable more energy for gelatinization during the cooking process.  相似文献   

2.
The rheological properties of batters formulated using different combinations of wheat, corn, and rice flours with two types of hydrocolloids, namely methylcellulose (0.5%, 1% and 1.5%) or xanthan gum (0.2%), were studied. Control samples were formulated with combinations of flours without the added hydrocolloids. The effects of hydrocolloids on rheological characteristics of the batter systems were measured using a controlled stress rheometer at a temperature of 15 °C. The effects of hydrocolloids on dynamic viscoelastic parameters as functions of temperatures were evaluated. All the batters showed shear thinning behaviour with flow behaviour indices in the range 0.34–0.67. Addition of xanthan gum lowered the flow index values, imparting a higher degree of pseudoplasticity to the batter samples compared to methylcellulose. The consistency index of the control batter samples varied from 0.46 to 69.2 Pa sn. Addition of xanthan gum or methylcellulose significantly increased the batter consistency index value. The gums changed the onset temperature of structure development, and the storage (Gmax) and loss moduli (Gmax) of the batter systems. However, no statistically significant effects were observed on the peak temperature of batter systems in which the G′ reached a maximum value. Xanthan gum increased both Gmax and Gmax, whereas at higher concentrations methylcellulose increased Gmax but lowered Gmax. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
The objectives of this study were to assess the effect of the addition of different hydrocolloids on gluten‐free batter properties and bread quality and to obtain information about the relationship between dough consistency and bread quality. Breads were made of rice, corn and soy flours and 158% water. Following hydrocolloids were added: carrageenan (C), alginate (Al), xanthan gum (XG), carboxymethylcellulose (CMC) and gelatine (Gel). Batter consistency, bread specific volume (SV), crumb analysis, crust colour, crumb hardness and staling rate were determined. Hydrocolloids increased batter consistencies: the highest value was obtained with XG, which doubled that of control batter, followed by CMC. Breads with hydrocolloid presented higher SV than control, especially with XG whose SV was 18.3% higher than that of control bread. A positive correlation was found between SV and batter consistency (r = 0.94; P < 0.05). Crumbs with Gel, XG and CMC presented higher cell average size. XG and CMC crumbs looked spongier. Breads containing hydrocolloid evidenced lighter crusts. Crumb firmness was decreased by XG and CMC addition, and staling rate was slower. Overall, XG was the hydrocolloid that most improved gluten‐free bread quality. These results show that, in formulations with high water content, batter consistency is strongly associated with bread volume.  相似文献   

4.
Effects of moisture content, xanthan gum (XG) addition, and glucose syrup (GS):sucrose ratio on the gelation of gelatin-XG systems with high levels of co-solutes were investigated in the rubbery and the glass transition regions. Frequency sweep tests were performed between 0.1 and 100 rad and the storage (G′) and loss (G″) moduli of the system were measured in the temperature range of 60 to −15 °C. The onset of glass transition region increased with decreasing moisture content. The time–temperature superposition yielded master curves of G′ and G″ as a function of timescale of measurement. G″ and G″ were superimposed with the horizontal shift factor aT, which was temperature dependent according to the Williams–Landel–Ferry (WLF) equation. Glass transition temperature (Tg) of the samples were determined by dynamic mechanical analysis (DMA) from the peak of tan δ. Tg decreased with XG addition. The energy of vitrification of samples with XG increased compared to samples containing only gelatin. Relaxation spectra of the samples were calculated from rheological measurements using the first and second approximations. The Rouse theory was more closely followed with the second approximation.  相似文献   

5.
Mechanical properties of gelatin–xanthan gum (XG) mixtures with high levels of co-solutes were examined by dynamic mechanical analysis (DMA). The mechanical spectra of the samples were modeled according to the Williams–Landel–Ferry (WLF) equation/free-volume theory, which requires an entropic lightly cross-linked network. For the α dispersion, E′ and E′′ superposed with the horizontal shift factor aT, which was temperature-dependent according to the WLF equation; no other secondary dispersion mechanism was detected. The addition of XG to gelatin networks with high levels of co-solutes changed the glass transition temperature (Tg) and kinetics of glass transition and glassy states. In the glassy state, the WLF equation was unable to follow progress in the mechanical properties, which were better described by the Andrade equation. The calorimetric measurements of the gelatin–XG systems were made using a modulated temperature differential scanning calorimetry (MTDSC) to improve the determination of Tg. The samples were exposed to two cooling and heating cycles to provide a controlled recent thermal history in the temperature range of 40 °C to −70 °C. The Tg values of the samples were determined from the second heating cycle in the reversing heat signal. The calorimetric Tg values increased with increasing glucose syrup:sucrose ratio due to increased crosslinking, whereas mechanical Tg decreased with increased XG content due to network formation.  相似文献   

6.
The aim of this work was to investigate the effects of hydrocolloid addition on rheological properties and breadmaking performance of rice-buckwheat batter at different water levels. Xanthan gum (XG) and propylene glycol alginate (PGA) were added to rice-buckwheat blend (60:40) at levels of 0.5–1.5%. Batter rheological properties were investigated using dynamic measurements in the linear viscoelastic range (frequency sweep and time cure tests). The addition of both hydrocolloids significantly enhanced the storage modulus (G′) of batter. XG exerted greater effect on G′ than PGA. Different effects on starch gelatinisation were observed for the two hydrocolloids. PGA breads showed higher improvement in terms of increased specific volume (Vs), decreased crumb firmness and crumb structure than XG breads. Different technological behaviours were explained on the basis of batter rheological properties.  相似文献   

7.
Rice flour-based batter is an alternative for wheat flour-based batter for consumers with wheat allergy or wheat intolerance. Further advantage of rice flour in batter is its ability to reduce oil uptake. However, due to its low-protein content, high amylose, and small granule size, rice flour-based batter possesses poor adhesion property. The aim of this study was to investigate the effect of the addition of hydroxypropyl methylcellulose (HPMC); a hydrocolloid, on rheological properties, coating pickup, and oil absorption of HPMC-rice-based fried batter. Rheological properties of rice flour-based batters containing HPMC with different degrees of substitution (DS) and concentrations were determined. In steady-shear measurements, the addition of HPMC; E4M (DS = 1.9) and K4M (DS = 1.4), led to the increase of apparent viscosity, yield stress, and consistency index. K4M rice flour batters showed shear-thickening behavior (n > 1) with syneresis. HPMC increased the complex modulus (G*) of batters, where storage moduli (G′) were higher than loss moduli (G″). The crossover points increased with increasing HPMC concentration. HPMC addition increased the coating pickup of fresh carrot sticks and less coating loss was observed with K4M. Rice batter formulated with 0.5% E4M provided deep-fried crust with 26% lower oil content compared to the control crust.  相似文献   

8.
Differential scanning calorimetry was used to measure the phase transitions and unfreezable water of carrots, reindeer meat, and white bread. The incipient melting point (Tim), incipient intensive melting point (T′im), the onset temperature of melting (Tm), latent heat of melting (ΔHm), specific heat (Cp) and enthalpy (ΔH) were determined from the melting curves. T′im, TmΔHm and ΔH and the unfreezable water were found to be functions of moisture. The Tim, temperatures were ? 39°C, ?33°C, ?40°C; T′im, ?11.8°C, ?13.3°C ?17.3°C Tm, ? 3.4°C, ? 3.1°C, ? 12.2°C for carrot, reindeer meat, and white bread, respectively. The unfreezable water was 8.3% for carrots, 15.1% for reindeer meat, and 22.5% for white bread, determined from ΔHm and 3.4%, 6.4% and 2.9%, determined from ΔH. The lowest water detectable from ΔHm was 26.4% and from ΔH 3.6%.  相似文献   

9.
This study was undertaken to prepare antioxidant‐rich gluten‐free eggless muffins from rice flour blended with varying amounts of jambolan fruit pulp (JFP) and xanthan gum (XG). The batters were evaluated for fundamental rheology, while muffins were analysed for physicochemical (colour, volume, water activity, total phenolic and flavonoid content), texture and sensory properties. The incorporation of JFP and XG increased batter viscoelasticity (increased G′ and G″ while decreased tan δ). JFP incorporation increased greenness (lower a* value), cohesiveness, resilience, water activity (aw), total phenolic content, total flavonoid content, DPPH and ABTS inhibition of the muffins. Further, XG improved muffin quality characteristics (appearance, specific volume and resilience). Sensory analyses revealed that JFP incorporation improved the consumer acceptability of the muffins.  相似文献   

10.
Dietary fibre (DF) from different whole grains and beans (quinoa, buckwheat, highland barley, pea and mung bean) was extracted by enzymatic action. The components, crystallinity and properties were comparatively studied. Furthermore, we evaluated correlations between DF components and their crystallinity, thermal, physicochemical and functional properties. Results showed quinoa DF had highest polyphenol (25.58 mg GAE per 100 g), pectin (4.68%) and cellulose (52.34%) contents, crystallinity value (CV, 30.24%), ΔH (185.53 J g−1), water-holding capacity (WHC, 5.35 g g−1), α-amylase activity inhibition ratio (α-AAIR, 13.34%) and glucose absorption capacity (GAC), but lowest protein content (9.78%) and Tp (163.05 °C). Mung bean DF had highest lignin content (33.56%), fat adsorption capacity (4.73 g g−1), and Tp (176.25 °C), but lowest CV (15.26%) and ΔH (132.15 J g−1). Correlation analysis showed cellulose content had positive linear correlations with CV, ΔH, WHC, α-AAIR and GAC, but a negative correlation with Tp. The structure and properties of DF are largely attributed to cellulose content.  相似文献   

11.
The effects of moisture content, xanthan gum (XG) addition and glucose syrup (GS):sucrose ratio on elastic (G′) and viscous (G″) moduli during in situ gelation and on large deformation rheological properties of cured gels were investigated. An increase in both moduli of the samples with XG addition indicates network structure being strengthened. All gel samples exhibited distinct fracture. An increase in GS:sucrose ratio led to a decrease in fracture stress and an increase in fracture strain, implying more flexible polymer network. Decreasing moisture content may lead to phase separation between sugar-rich and polymer-rich phases to form stronger connection within the network structure. Textural characteristics of samples analyzed using a texture map, indicated that increasing GS:sucrose ratio rendered the sample texture more rubbery when the samples contained XG. We also related factors affecting the gelling mechanisms in terms of Tg measured by different techniques including DMA and modulated DSC.  相似文献   

12.
Notwithstanding multiple mechanisms of radical scavenging (RS), measured RS activities (RSA) of flavonoids are usually related to O–H bond dissociation enthalpy (BDE) for hydrogen atom transfer (HAT). For 12 flavonoids the reaction free energies were calculated for: (1) HAT, (2) single electron transfer–proton transfer (SET-PT) and (3) sequential proton loss electron transfer (SPLET) in gas and aqueous phases. Aqueous free energies, like bond dissociation (BDFEaq), ionisation (IFEaq) and deprotonation (ΔGdeprot,aq) free energies were estimated using thermochemical cycles. While in gas HAT is a RS mechanism (BDFEg < IFEg < ΔGdeprot,g), in water SPLET can be concurrent or dominant mechanism depending upon pH since ΔGdeprot,aq < BDFEaq and ETFEaq ? BDFEaq. For 12 flavonoids, BDFEaq has been correlated with ΔGdeprot,aq and ETFEaq with = 0.74 and 0.87 respectively. This reveals why BD(F)E parameter explains most of variance in variously measured RSA data even if the underlying mechanism is SPLET.  相似文献   

13.
A water-soluble polysaccharide was obtained from Guibourtia hymenifolia seeds in a 54.2% yield (w/w). The Glc:Xyl:Gal molar ratio was 3.3:2.3:1. The methylation results and 1D/2D NMR spectra indicated the presence of xyloglucan (XG), the intrinsic viscosity of which was 665 mL/g. The molar mass (Mw), radius of gyration (Rg), hydrodynamic radius (Rh), and ρ (Rg/Rh) of XG were 8.43 × 105 g/mol, 97 nm, 61 nm, and 1.59, respectively, indicating a random coil and flexible conformation that was subsequently confirmed by the Mark–Houwink constant α (0.70). Atomic force microscopy analysis of XG adsorbed on silicon revealed that the chains are an average of 1.25-nm high, 28.9-nm wide and 131-nm long. Furthermore, a cytotoxicity assay indicated a high CC50 value (>3.3 mg/mL). These results suggest that this biopolymer has potential applications in different food technologies and biotechnological processes.  相似文献   

14.
Many foods gain new mechanical, thermal and textural properties after being processed due to interactions between carbohydrates and proteins. This effect is characteristic for each foodstuff. The properties of extruded isolated soy protein (ISP) and rice starch were studied considering the following extrusion variables: starch proportion with respect to ISP (0–100%), pH (3–9), moisture content (20–30%) and temperature (140–180ºC). The following characteristics were measured: Water absorption index (WAI), water solubility index (WSI), glass transition temperature (Tg), melting temperature (Tm), viscosity at 90ºC and at 50ºC, storage (G′), loss modulus (G′′) and tan δ. The results indicate that the extruded starch exhibits higher WAI and WSI values than untreated starch. For extruded ISP these values are much lower than for untreated ISP. Extrudates with higher starch proportion had higher Tg and Tm values; pH has a significant effect (p<0.05), at pH 3 higher Tg values were observed, and at pH 9 higher values of Tm. The highest viscosities at 90ºC and 50ºC were observed for extrudates with a higher starch proportion and pH 9. Extruded mixtures showed a more elastic than viscous behavior and an extruded 1:1 blend of starch‐ISP exhibited the behavior of a viscous liquid.  相似文献   

15.
β-Galactosidases, produced by pure and mixed cultures of Streptococcus thermophilus 95/2 (St 95/2) and Lactobacillus delbrueckii ssp bulgaricus 77 (Lb 77) isolated from the Toros mountain region of Turkey, were characterised with respect to their biochemical and thermal properties. Optimum pH and temperature for maximum activity were determined and these enzymes were stable in the pH range 7–9 and in the temperature range 20–37 °C, retaining 80–90% of their initial activities. The inactivation energies of β-galactosidase from Lb 77, St 95/2 and mixed culture (Lb 77 and St 95/2) were 51.3, 44.0 and 48.3 kcal mol−1, respectively. Moreover, thermodynamic (ΔG, ΔS, ΔH) and kinetic constants (Km and Vmax) were determined and effects of metal ions were investigated. As a result, these enzymes could be considered as potential candidates for lactose hydrolysis of milk and milk products.  相似文献   

16.
Staphylococcus xylosus and Pediococcus pentosaceus isolated from Chinese dried sausage were assessed for their ability to convert metmyoglobin into nitrosylmyoglobin in Mann–Rogosa–Sharp broth model systems and raw pork meat batters without the addition of nitrite. The results showed that samples in model systems with S. xylosus cultures had an absorption spectra that is typical of nitrosylmyoglobin, an obvious pink colour (judged by visual inspection) and a significantly higher a*-value than the control samples or samples inoculated with P. pentosaceus. In raw meat batters, the a*-values of the S. xylosus samples were almost the same as those for the meat with nitrite added. The complementary analysis of meat batter samples by photochemical information from UV–vis, electron spin resonance and resonance Raman spectroscopy revealed that the existing status of the myoglobin in meat batters inoculated with S. xylosus was mainly pentacoordinate nitrosylmyoglobin. This study provides a potential solution for nitrite substitute in meat products.  相似文献   

17.
Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest Tm and ΔmH. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan–xanthan complexes in the films.  相似文献   

18.
The influence of glycerol and sorbitol on the thermal stability and heat-induced gelation of β-lactoglobulin (β-lg) in aqueous solutions was investigated. The thermal stability of β-lg was characterized by measuring the thermal denaturation temperature (Tm) using differential scanning calorimetry, while its gelation properties were characterized by measuring the gelation temperature (Tgel) and final gel rigidity (G) using dynamic shear rheology. All experiments were carried out using aqueous solutions containing 10% (w/w) β-lg, glycerol (0–70% w/w) or sorbitol (0–55% w/w), and 5 mM phosphate buffer (pH 7.0). No salt was added to these solutions so that there was a relatively strong electrostatic repulsion between the protein molecules, which usually prevents gelation. When the cosolvent concentration was increased from 0% to 50%, Tm increased from 74 to 86 °C for sorbitol, but only from 74 to 76 °C for glycerol, which indicated that sorbitol was much more effective at stabilizing the native state of the globular protein than glycerol. Protein solutions containing sorbitol (0–55%) did not form a gel after heating, but those containing glycerol formed gels when the cosolvent concentration exceeded about 10%, with G increasing with increasing glycerol concentration. We attribute these effects to differences in the preferential interactions of polyols and water with the surfaces of native and heat-denatured proteins, and their influence on the protein–protein collision frequency.  相似文献   

19.
《Food chemistry》2004,85(1):131-140
The starches separated from kernels of five different Indian mango cultivars (Chausa, Totapuri, Kuppi, Langra and Dashehari) were investigated for physicochemical, morphological, thermal and rheological properties. Mean granule length and width of the starches separated from mango cultivars ranged between 15.8–21.7 and 8.7–14.1 μm, respectively. The shape of starch granules varied from oval to elliptical. Amylose content of mango kernel starches from different cultivars ranged from 9.1 to 16.3%. Totapuri kernel starch, with the largest mean granular size, had the highest amylose content, while Chausa kernel starch, with the lowest mean granular size had the lowest amylose content. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) were determined using differential scanning calorimetry (DSC). To, Tp and Tc varied from 73.4 to 76.3, 78.1 to 80.3 and 83.0 to 85.7 °C, respectively. Chausa kernel starch showed the highest To, Tp, Tc, ΔHgel and peak height index among starches from different mango cultivars. The rheological properties of the starches from different mango cultivars measured using a dynamic rheometer, showed significant variations in the peak G′, G″ and peak tan δ values. Totapuri kernel starch showed the highest peak G′, G″, breakdown in G′ and lowest peak tan δ values. The large-size granules of Totapuri kernel starch appeared to be associated with higher values of peak G′ and G″. The turbidity of the gelatinized aqueous starch suspensions, from all mango cultivars, increased with increase in storage period. Dashehari starch paste showed lower turbidity values than other mango cultivars.  相似文献   

20.
Poly(ε-caprolactone)/nanoclay composite (PCLNC) films were prepared by solvent casting method using a wide range of layered silicate (2.5–10%) and were characterized by different techniques. Nanofiller dispersions in PCL matrix were studied by wide-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM), and results indicated the formation of some intercalated nanostructure of PCLNC. Rheological and thermal properties of PCLNC were measured by parallel-plate oscillatory rheometry and differential scanning calorimetry (DSC), respectively. Rheological study indicated that the predominating liquid-like properties (viscous modulus, G″ > elastic modulus, G′) of neat PCL gradually transformed to solid-like (G′ > G″) behavior after incorporation of clay in the temperature range of 90–120 °C. A plot of G′ vs. G″ provide information on intercalation and microstructure of nanocomposite. Applicability of time–temperature superposition (TTS) principle and van Gurp–Palmen plot (phase angle vs. absolute complex modulus) on rheological data of clay incorporated PCL were employed and found that the results failed to follow the rules. Incorporation of the nanoclay into PCL matrix increased the crystallization temperature (Tc) and melting temperature (Tm) of neat PCL from 28.7 to 32.3 °C and 56.3 to 59.2 °C, respectively due to the nucleating effect, but the glass transition temperature (Tg) (≈−65 °C) was remained unaffected. The decrease in crystallinity with increase in clay concentration was confirmed by both XRD and DSC data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号