首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The optimization of the functionalities of commercial protein ingredients still constitutes a key objective of the food industry. Our aim was therefore to compare the effect of thermal treatments applied in typical industrial conditions on the foaming properties of whey protein isolate (WPI) and egg white proteins (EWP): EWP was pasteurized in dry state from 1 to 5 days and from 60 °C to 80 °C, while WPI was heat-treated between 80 °C and 100 °C under dynamic conditions using a tubular heat exchanger. Typical protein concentrations of the food industry were also used, 2% (w/v) WPI and 10% (w/v) EWP at pH 7, which provided solutions of similar viscosity. Consequently, WPI exhibited a higher foamability than EWP. For WPI, heat treatment induced a slight decrease of overrun when temperature was above 90 °C, i.e. when aggregation reduced too considerably the amount of monomers that played the key role on foam formation; conversely, it increased foamability for EWP due to the lower aggregation degree resulting from dry heating compared to heat-treated WPI solutions. As expected, thermal treatments improved significantly the stability of WPI and EWP foams, but stability always passed through a maximum as a function of the intensity of heat treatment. In both cases, optimum conditions for foam stability that did not impair foamability corresponded to about 20% soluble protein aggregates. A key discrepancy was finally that the dry heat treatment of EWP provided softer foams, despite more rigid than the WPI-based foams, whereas dynamically heat-treated WPI gave firmer foams than native proteins.  相似文献   

2.
Aggregates were formed by heating mixtures of whey protein isolate (WPI) and pure κ-casein or sodium caseinate at pH 7 and 0.1 M NaCl. The aggregates were characterized by static and dynamic light scattering and size exclusion chromatography. After extensive heat-treatment at 80 °C for 24 h, almost all whey proteins and κ-casein formed mixed aggregates, but a large proportion of the sodium caseinate did not aggregate. At a given WPI concentration the size of the aggregates decreased with increasing κ-casein or sodium caseinate concentration, but the overall self-similar structure of the aggregates was the same. The presence of κ-casein or caseinate therefore inhibited growth of the heat-induced whey protein aggregates. The results were discussed relative to the reported chaperone-like activity of casein molecules towards heat aggregation of globular proteins.  相似文献   

3.
The influence of dynamically heat-induced aggregates on whey protein foams was investigated as a function of the thermal treatment applied to WPI using a bubbling technique. The aim was to determine the interplay between the size/shape/proportion of the heat-induced aggregates and the properties of protein foams (formation and stability). Results showed that insoluble protein aggregates were highly branched and cohesive, whereas soluble aggregates were constituted by subunits, associated by hydrophobic bonds and formed by α-La and β-Lg monomers linked by disulfide bridges. Using the bubbling procedure, protein aggregates were shown to slow down significantly foam formation. However, the rate of foam formation remained nearly unchanged for wet foams when the amount of insoluble aggregates was inferior to 5% and when their size remained lower than 100 μm. Similarly, protein aggregates did not seem to affect the destabilisation kinetics of wet foams, regardless of amount, size, shape and proportion.  相似文献   

4.
In this work heat stability and rheological properties of concentrated whey protein particle dispersions in different dispersing media are studied. Whey protein particles (protein content ∼20% w/v) having an average size of a few microns were formed using a combination of two-step emulsification and heat-induced gelation. Particles were dispersed (volume fraction of particles ∼0.35) in solutions of Na-caseinate, whey protein isolate or gum arabic at different concentrations. The microstructure, particle size distribution and flow behaviour of the dispersions were analyzed before and after heating at 90 °C for 30 min.  相似文献   

5.
The effect of pH on the heat-induced denaturation/aggregation of whey protein isolate (WPI) in the dry state was investigated. WPI powders at different pH values (6.5, 4.5, and 2.5) and controlled water activity (0.23) were dry heated at 100 °C for up to 24 h. Dry heating was accompanied by a loss of soluble proteins (native-like β-lactoglobulin and α-lactalbumin) and the concomitant formation of aggregated structures that increased in size as the pH increased. The loss of soluble proteins was less when the pH of the WPI was 2.5; in this case only soluble aggregates were observed. At higher pH values (4.5 and 6.5), both soluble and insoluble aggregates were formed. The fraction of insoluble aggregates increased with increasing pH. Intermolecular disulphide bonds between aggregated proteins predominated at a lower pH (2.5), while covalent cross-links other than disulphide bonds were also formed at pH 4.5 and 6.5. Hence, pH constitutes an attractive tool for controlling the dry heat-induced denaturation/aggregation of whey proteins and the types of interactions between them. This may be of great importance for whey ingredients having various pH values after processing.  相似文献   

6.
The effect of a negatively charged polymer, κ-carrageenan, on the aggregation behaviour of whey proteins during heating was studied. Aqueous solutions of whey protein isolate (WPI) at 0.5% were heated in the presence of κ-carrageenan (0.1%) at pH 7.0. This concentration was chosen as optimal in the detection of the intermediate aggregates during chromatographic analysis. The residual unaggregated protein, the intermediate aggregates and the soluble aggregates were all examined as a function of heating time and temperature, using size-exclusion chromatography coupled with light scattering detection. The presence of κ-carrageenan did not affect the aggregation of whey proteins heated at 75 °C; however, a change in the mechanism of aggregation seemed to occur at higher temperatures, and intermediates with higher molecular mass formed at 85 °C. At 90 °C, in the presence of κ-carrageenan, the extent of WPI aggregation was much larger, as soluble aggregates were no longer present and less residual protein was recovered in the unaggregated peak.  相似文献   

7.
Native whey proteins (NWPs) may form gels or aggregates after thermal processing. The goal of this work was to improve heat stability of NWPs by incorporating protein solutions in nanoscalar micelles of water/oil microemulsions to form whey protein nanoparticles (WPNs) by thermal pretreatment at 90 °C for 20 min. The produced WPNs smaller than 100 nm corresponded to a transparent dispersion. The WPNs produced at NWP solution pH of 6.8 had a better heat stability than those produced at pH 3.5. The salt concentration (0–400 mM NaCl) in NWP solutions did not significantly change the size of corresponding WPNs. Compared to NWPs, the 5% (w/v) dispersion of WPNs at pH 6.8, 100 mM NaCl did not form a gel after heating at 80 °C for 20 min. The improved heat stability and reduced turbidity of WPNs may enable novel applications of whey proteins in beverages.  相似文献   

8.
Whey protein isolate (WPI) nanoparticles were prepared by diluting an alkaline solution of protein in ethanol at concentrations varying between 50 and 80%. The nanoparticles were then immediately diluted in buffer. While the nanoparticles were not stable at pH 7, they showed no changes in size when diluted at pH 3. When 75–80% ethanol was added during preparation, the size of the WPI nanoparticles ranged between 10 and 100 nm, with no change in size after dilution and storage at pH 3 for 96 h at 22 °C. When heating was applied, particle aggregation occurred, and large aggregates (>1 μm) were observed at temperatures > 60 °C. The particle size of the heat-induced aggregates could be reduced by homogenization. The nanoparticles prepared by desolvation showed interfacial pressure values similar to those of the corresponding protein solutions, indicating similar interfacial properties and the potential to be used to stabilize emulsions but as supramolecular aggregates of WPI.  相似文献   

9.
The kinetics of protein aggregation induced by cooking were investigated in pig M. Longissimus dorsi. The 4 day aged muscles were cooked either in water or under dry heat conditions for 30 min. Four temperatures from 50 to 100 °C were tested for the “in water” cooking mode and an additional temperature of 140 °C was tested in the dry condition. Raw and cooked meat specimens were ground in a KCl solution. After delipidation of the meat extract, protein aggregation was evaluated with a laser granulometer (Sysmex FPIA-3000) which enabled reliable and reproducible characterization of particle number, size, and shape distribution using automated imaging techniques. The cooking mode (dry/“in water”) did not affect the granulometry measurements. But, increasing cooking time and temperature affected the number, the size, and the shape of particles. An important decrease in particle number was observed during cooking in parallel with a reduction in particle size and a change in circularity. From these data a model with intermediary fibrillar aggregates and final amorphous aggregates was proposed.  相似文献   

10.
Rheological properties of heat-induced pea protein isolate (PPI) gels with added microbial transglutaminase (MTGase) were studied under various reaction conditions. A positive linear relationship was observed between level of MTGase used (0 to 0.7% w/w) and shear stress and shear strain of heat-set commercial pea protein isolate (PPIc) gels at 92 °C following incubation at 50 °C. Use of MTGase allowed for preparation of PPIc gels of similar strength and elasticity as commercial soy protein isolate gels and commercial meat bologna. MTGase treatment did not alter thermal properties of PPI gels. The shear stress and strain of PPIc gels were also improved following low temperature (4 °C) incubation of PPI with MTGase. Enhancement of shear strain or gel elasticity of heat-induced PPI gels with MTGase has not been reported before and provides opportunities for extending the properties of pea proteins when developing new food products.  相似文献   

11.
The formation of whey protein aggregates, often termed soluble aggregates, with specific physicochemical properties has been shown to result in improved functionality in gels, foams, emulsions, encapsulation, films and coatings. This work evaluated the potential of whey protein soluble aggregates to improve thermal stability in the presence of salts and determine the mechanism of improved thermal stability. Solutions of whey protein isolate (WPI) or β-lactoglobulin (β-lg) (7% w/w, pH 6.8) were heated for 10 min at 90 °C to form soluble aggregates. Native proteins and soluble aggregates were diluted to 3% w/w in solutions containing 0–108 mM NaCl and thermally treated (90 °C, 5 min). Turbidity, solubility, and viscosity were evaluated, in addition to ζ-potential and So (surface hydrophobicity). Size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) and dynamic light scattering were used to determine aggregate size and transmission electron microscopy (TEM) was used to evaluate aggregate shape. Use of soluble aggregates improved thermal stability due to their altered aggregate shape and higher charge, and resulted in final aggregates that were smaller and less dense, leading to reduced viscosity and turbidity, and increased solubility compared to native proteins. It is concluded that soluble aggregates formed under the appropriate conditions to produce the desirable physicochemical properties can be used to improve whey protein thermal stability with a possible application in beverages.  相似文献   

12.
Functional properties of commercial and membrane processed pea protein isolates (PPI) prepared from yellow peas were investigated. Four protein isolates were prepared from yellow pea flour using water and KCl extractions at 25 °C followed by ultrafiltration and diafiltration (UF and DF) at pHs of 7.5 and 7.5 or 6 respectively. Following assessment of compositional attributes; solubility, foaming, flow and dynamic rheology, emulsification ability and heat-induced textural and rheological properties of prepared PPIs and a commercially available PPI were tested and compared. Membrane purification of proteins resulted in 28% to 68% reduction in phytic acid and enhanced, comparatively, the tested functional properties. Solubility of membrane processed PPIs, at all tested pHs, was superior and the lowest foaming stability and apparent viscosity were associated with commercial PPI. Gelling temperatures of water and KCl extracted PPIs, DF treated at pH 6, trimmed down to 75.7 ± 0.63 °C and 81.6 ± 0.55 °C in contrast to that of commercial PPI at above 90 °C. Similarly, the formation of firm gels, after 1 h heating at 90 °C, was associated with membrane processed PPIs whereas commercial PPI did not develop any gel.  相似文献   

13.
Millet protein was solubilized by chymotrypsin; the soluble protein was conjugated to galactomannan under controlled conditions (60 °C, 76% RH) or polymerised by transglutaminase (TGase). SDS–PAGE patterns showed that the conjugated and polymerised proteins had higher molecular mass bands above the stacking gel. SDS–PAGE patterns also indicated that the digest was conjugated to galactomannan and polymerised by TGase. The free amino groups (OD340) of the conjugated and polymerised digest were greatly reduced. Although the chymotrypsin digest was considerably insoluble between pH 2.0 and 5.0, galactomannan conjugate was completely soluble at all levels of pH. TGase polymer was slightly insoluble at pH 4.0. Galactomannan conjugate resisted heat-induced aggregation, even after heating at 90 °C for 20 min, while TGase polymer resisted heat-induced aggregation up to 70 °C, after which its solubility started to decline. The emulsifying properties of the conjugate and the polymerized proteins were greatly improved, compared to the native and chymotrypsin digests.  相似文献   

14.
Thermal aggregation of duck egg white solution (1 mg protein/ml, pH 7) was monitored in the presence of different NaCl concentrations (0–6%, w/w) across the temperature range of 20–90 °C. Duck egg white solution exhibited higher turbidity with coincidental increases in surface hydrophobicity and decreases in sulfhydryl group content as temperatures increased from 70 to 90 °C (p < 0.05). As NaCl concentration increased, the negative charge decreased, with coincidental increases in particle size of aggregate after heating to 90 °C. As visualised by confocal laser scanning microscopy, larger clusters of protein aggregates were observed with increasing NaCl concentrations. Major duck egg white protein with molecular mass of 45 kDa disappeared in the presence of 2–6% NaCl after heating above 80 °C, regardless of concentrations. Therefore, NaCl, especially at high concentrations, could induce thermal aggregation of duck egg white protein, which could determine the characteristics of salted egg white after heating.  相似文献   

15.
The aim of the present work is the in depth study of the protein aggregation mechanisms of whole porcine plasma and its fractions (serum, albumin and globulins) during heating using FTIR spectroscopy. Also, 2D correlation spectroscopy (2D COS) was used to establish the sequence of events during heat-induced gelation for all fractions. The results indicate that serum albumin quickly aggregates from 70 °C through non-native intramolecular β-sheets while globulins show lower susceptibility to protein aggregation. When found together, the aggregation pattern strongly depends on the composition of the protein mixture. That makes the great difference between plasma (serum albumin + globulins + fibrinogen) and serum (serum albumin + globulins) behavior, with the aggregation degree at the end of the thermal process being enhanced in the presence of fibrinogen - and achieving a similar level to that of serum albumin - while minimized in its absence. Attending on the low content of fibrinogen in plasma, our results suggest a great fibrinogen ability to alter the thermal serum albumin and globulins behavior by modifying the negative interactions established between them when no more proteins are found in the media. Moreover, it is noteworthy the slow plasma aggregation pattern at the beginning of the thermal process relative to serum albumin, this way allowing a higher protein unfolding. This could be related to the high heat-induced gel properties of plasma. Also, 2D COS indicates that the sequence of events is very similar for the all analyzed samples, with α-helix being more thermo-labile than native β-sheet structure.  相似文献   

16.
The influence of glycerol and sorbitol on the thermal stability and heat-induced gelation of β-lactoglobulin (β-lg) in aqueous solutions was investigated. The thermal stability of β-lg was characterized by measuring the thermal denaturation temperature (Tm) using differential scanning calorimetry, while its gelation properties were characterized by measuring the gelation temperature (Tgel) and final gel rigidity (G) using dynamic shear rheology. All experiments were carried out using aqueous solutions containing 10% (w/w) β-lg, glycerol (0–70% w/w) or sorbitol (0–55% w/w), and 5 mM phosphate buffer (pH 7.0). No salt was added to these solutions so that there was a relatively strong electrostatic repulsion between the protein molecules, which usually prevents gelation. When the cosolvent concentration was increased from 0% to 50%, Tm increased from 74 to 86 °C for sorbitol, but only from 74 to 76 °C for glycerol, which indicated that sorbitol was much more effective at stabilizing the native state of the globular protein than glycerol. Protein solutions containing sorbitol (0–55%) did not form a gel after heating, but those containing glycerol formed gels when the cosolvent concentration exceeded about 10%, with G increasing with increasing glycerol concentration. We attribute these effects to differences in the preferential interactions of polyols and water with the surfaces of native and heat-denatured proteins, and their influence on the protein–protein collision frequency.  相似文献   

17.
In this study, the amount, size, calcium sensibility, and composition of heat-induced protein particles in the mixture of beta-conglycinin (7S) and whey soybean protein (WSP) dispersion are compared with those of 7S and WSP dispersion to investigate the interactions between WSP and 7S during heating. The addition of 7S prevents WSP from forming large protein particles which can be precipitated by centrifugation at 10,000g for 10 min. The protein in the heated mixture of 7S and WSP (7S/WSP = 1/1) coagulates at higher calcium concentrations than that in the mixture of heated 7S and heated WSP at a ratio of 1/1. This result strongly indicates that 7S and WSP interact with each other during heating and form complex protein particles which have special surface properties that are different from individual 7S and WSP protein particles. Particle size distribution analysis has also shown that 7S prevents WSP from forming larger protein particles during heating. SDS-PAGE analysis shows that lipoxygenase (LOX), beta-amylase, and lectin of WSP and the beta subunit of 7S tend to form a particulate fraction, while the KTI, alpha, and alpha′ subunits tend to form a soluble fraction. WSP, 7S, and their mixture have been heated at 60, 65, 70, 75, 80, 85, 90, and 95 °C for 10 min, and ultracentrifugation analysis shows that about 77–85% of the protein particles were formed at 65–75 °C in all three dispersions. SDS-PAGE analysis indicates that LOX and β-amylase have been denatured and that they have participated in the formation of protein particles when heated within 65–75 °C, while lectin has begun to participate in particle formation at above 85 °C. It is concluded that WSP plays an evident role in the formation of protein particles in soymilk during heating.  相似文献   

18.
Differently homogenised and HTST-heated milk (3.5% fat) was foamed at temperatures between 4 and 60 °C. Foaming was achieved by air injection through fritted glass. Initial foam density, drainage and corresponding bubble size were analysed. Transmission electron microscopic (TEM) images completed the study. The studies showed that whole milk was better foamable between 50 and 60 °C than at lower temperatures. This was mainly due to the completely liquid milk fat and the increased protein adsorption at the air-serum interface. The resulting bubbles of these two foams maintained their spherical shape also for 20 min of draining. However, the average bubble diameter and the drainage mass in relation to the initial foam mass increased from about 20 g/100 g after 1 min to about 80 g/100 g after 20 min. It was surprising to learn that milk homogenisation and corresponding fat globule size had only marginal effect on foam formation and stability. TEM images suggested that the air-serum interface consisted mainly of protein monomers and oligomers, while casein micelles were not directly adsorbed. The membrane of the homogenised fat globules was destroyed near the interface and coalesced liquid fat formed a restricted film on the bubble that was obviously of minor importance for the foam properties.  相似文献   

19.
The objective of this study was to investigate the effect of concentration and temperature on the rheological properties of soy proteins (SP) and micellar casein (MCN) systems. Individual and mixed (1:1) protein systems of 2–15% concentration were prepared and heat treated for 5 min at 40–90 °C. After cooling to 20 °C, their rheological properties were determined using steady-shear rheology. Zeta potential and particle size measurements were also conducted. Both proteins were negatively charged under all experimental conditions, but the absolute values of zeta potential and thus the stability of the protein solutions decreased with temperature and concentration. For SP solutions, viscosity and apparent yield stress increased with concentration. Shear thinning behavior was prevalent, becoming more pronounced with increasing concentration. Heat treatments at T ≥ 80 °C induced glycinin denaturation, followed by aggregation and network formation when C ≥ 7.5%. Heat treatment did not significantly affect viscosity of MCN systems, while increasing concentration resulted in a significant increase in apparent viscosity and apparent yield stress. Most MCN systems exhibited Newtonian flow behavior, with the exception of systems with C ≥ 12.5% treated at T ≥ 80 °C, which became slightly shear thickening. Mixed SP–MCN systems mimicked the behavior of SP, with most values of rheological parameters intermediate between SP and MCN-only systems. Mixtures of 7.5–12.5% concentration treated at 90 °C displayed local phase separation, low viscosity and apparent yield stress, while 15% mixtures treated at 90 °C showed protein aggregation and incipient network formation. The data generated in this study can be used to develop a range of protein based products with unique flow characteristics and storage stability.  相似文献   

20.
The effects of different drying temperatures (20, 60, 85, 110 and 180 °C) on digestibility and potential allergenicity of durum wheat proteins were studied in model pasta samples, cooked in boiling water (MPSs). Increasing the drying temperature resulted in increased protein denaturation and aggregation. In vitro treatment of MPSs with pepsin and pancreatin showed similar protein degradability up to a drying temperature of 110 °C, resulting in the disappearance of the main prolamin components. In contrast, the MPS treated at 180 °C was much less digestible, due to the presence of Maillard-type protein aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号