首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of chitosan concentration (0–0.3 wt%) and molecular weight (120, 250 and 342.5 kDa) on the physical stability and lipase digestibility of lecithin-stabilized tuna oil-in-water emulsions was studied. The ζ-potential, droplet size, creaming stability, free fatty acids and glucosamine released was measured for the emulsions when they were subjected to an in vitro digestion model. The ζ-potential of the oil droplets in lecithin-chitosan stabilized emulsions changed from positive (≈+53 mV) to negative and the emulsions were unstable to droplet aggregation for all chitosan concentrations and molecular weights used after being subjected to the digestion model. The amount of free fatty acid and glucosamine released per unit amount of emulsion was higher when pancreatic lipase was included in the digestion model. These results suggest that lecithin-chitosan coated droplets can be degraded by lipase under simulated gastrointestinal conditions. Consequently, chitosan coated lipid droplets may serve as useful carriers for the delivery of bioactive lipophilic nutraceuticals.  相似文献   

2.
The freeze–thaw stability of 5 wt% hydrogenated palm oil-in-water emulsions (pH 3) containing droplets stabilized by sodium dodecyl sulfate (SDS)–chitosan–pectin membranes was studied. The multilayered interfacial membranes were created using an electrostatic layer-by-layer deposition method. The ζ-potential, mean particle diameter, fat destabilization, apparent viscosity and microstructure of the emulsions were used to examine the influence of freezing on their stability. Emulsions containing oil droplets stabilized only by SDS were highly unstable to droplet coalescence when either the oil phase became partially crystallized or the water phase crystallized. Emulsions containing oil droplets stabilized by SDS–chitosan membranes were stable to droplet coalescence, but unstable to droplet flocculation. Emulsions containing droplets stabilized by SDS–chitosan–pectin membranes were stable to both droplet coalescence and flocculation. The interfacial engineering technology utilized in this study could lead to the creation of food emulsions with improved stability to freeze–thaw cycling.  相似文献   

3.
The shortening of shelf-life of food emulsions is frequently due to poor creaming and lipid oxidation stability. The lipid oxidation of O/W emulsions can be inhibited by rice dreg protein hydrolysate (RDPH); however, emulsions were stabilized by Tween-20. Polysaccharides can control the rheology and network structure of the aqueous continuous phase by increasing viscosity and yield stress, hence retarding phase separation and gravity-induced creaming, especially for xanthan gum. The objective of this research was to evaluate whether emulsions formed with 2 wt% RDPH and stabilized by xanthan gum (0–0.5 wt%) could produce 20 % (v/v) soybean oil-in-water emulsions that had good physical and oxidative stability. The degree of flocculation of droplets as a function of xanthan gum concentration was assessed by the microstructure, rheology, and the creaming index of emulsions. Addition of xanthan gum prior to homogenization had no significant effect on the mean droplet diameter in all emulsions studied. Increase in xanthan gum concentration led to the increase in creaming stability of emulsions, due to an increase in viscosity of the continuous phase and/or the formation of a droplet network with a yield stress, as well as the enhanced steric and electrostatic repulsion between the droplets. Lipid oxidation of the emulsions was significantly inhibited at xanthan gum concentrations of 0.12 wt% or above with RDPH, which could due to the fact that xanthan gum increases the viscosity of the aqueous phase and hindered the diffusion of oxidants to the oil droplet surface area, synergistic effect between RDPH and xanthan gum to suppress oil peroxidation, and metal ion chelation capability of xanthan gum. Thus, stable protein hydrolyzates-type emulsions could be obtained with increasing concentration of xanthan gum.  相似文献   

4.
ABSTRACT Oil‐in‐water emulsions (20% n‐hexadecane, v/v) were stabilized by dodecyltrimethylammonium bromide (DTAB), Tween 20, or sodium dodecyl sulfate (SDS). Particle size distribution and creaming stability were measured before and after adding Escherichia coli cells to emulsions. Both E. coli strains promoted droplet flocculation, coalescence, and creaming in DTAB emulsions, although JM109 cells (surface charge = ‐35 mV) caused faster creaming than E21 cells (surface charge = ‐5 mV). Addition of bacterial cells to SDS emulsions promoted some flocculation and coalescence, but creaming stability was unaffected. Droplet aggregation and accelerated creaming were not observed in emulsions prepared with Tween 20. Surface charges of bacterial cells and emulsion droplets played a key role in emulsion stability.  相似文献   

5.
Corn oil-in-water emulsions (20 wt%, d32~ 0.6 μm) stabilized by 2 wt% whey protein isolate were prepared with a range of pH (3–7) and salt concentrations (0–100 mM NaCl), and particle size, rheology and creaming were measured at 30°C. Appreciable droplet flocculation occurred near the isoelectric point of whey protein (pH 4–6), especially at higher NaCl concentrations. Droplet flocculation increased emulsion viscosity and decreased stability to creaming. Results are related to the influence of environmental conditions on electrostatic and other interactions between droplets.  相似文献   

6.
Tuna oil-in-water emulsions (5 wt% tuna oil, 100 mM acetate buffer, pH 3.0) containing droplets stabilized either by lecithin membranes (primary emulsions) or by lecithin–chitosan membranes (secondary emulsions) were produced. The secondary emulsions were prepared using a layer-by-layer electrostatic deposition method that involved adsorbing cationic chitosan onto the surface of anionic lecithin-stabilized droplets. Primary and secondary emulsions were prepared in the absence and presence of corn syrup solids (a carbohydrate widely used in the micro-encapsulation of oils) and then their stability to environmental stresses was monitored. The secondary emulsions had better stability to droplet aggregation than primary emulsions exposed to thermal processing (30–90 °C for 30 min), freeze-thaw cycling (−18 °C for 22 h/30 °C for 2 h), high sodium chloride contents (200 mM NaCl) and freeze-drying. The addition of corn syrup solids decreased the stability of primary emulsions, but increased the stability of secondary emulsions. The interfacial engineering technology used in this study could lead to the creation of food emulsions with novel properties or improved stability to environmental stresses.  相似文献   

7.
Electrostatic interactions between polysaccharides and proteins at oil–water interfaces alter the physicochemical properties and stability of emulsions. In this research, we studied the influence of chitosan addition on the properties of oil-in-water emulsions containing whey protein-coated lipid droplets. Experiments were carried out under conditions where the protein and polysaccharide had similar charges (pH 3.0) or opposite charges (pH 6.5). At pH 3.0, chitosan addition (0–0.025%) had little influence on droplet charge, aggregation, creaming stability or shear viscosity of whey protein emulsions, which was attributed to the fact that the cationic chitosan molecules did not adsorb to the cationic droplet surfaces due to electrostatic repulsion. At pH 6.5, chitosan addition caused a decrease in particle negative charge, an increase in particle size, a decrease in creaming stability, and an increase in viscosity. These effects were attributed to droplet aggregation caused by charge neutralization and bridging resulting from attraction of cationic chitosan molecules to anionic patches on the protein-coated droplet surfaces. Addition of cationic polyelectrolytes to protein-stabilized emulsions may be utilized to control their physicochemical properties, stability and biological fate, which may be useful for developing commercial products with novel or improved functional properties.  相似文献   

8.
The purpose of this study was to examine the influence of a non-ionic cosurfactant (Tween 20) on the formation and properties of electrostatic complexes consisting of charged oil droplets and charged biopolymers. The mean droplet diameters in oil-in-water emulsions prepared using a membrane homogenizer were considerably larger when β-lactoglobulin (BLG) was used alone (≈8 μm), than when it was used in combination with Tween 20 (≈2 μm). The cationic oil droplets formed by membrane homogenization (4.0 μm pore size) were mixed with either alginate (anionic) solution (1% oil: 0–0.5% alginate: pH 3.5) or with alginate (anionic) and then chitosan (cationic) solutions (0.4% oil: 0.1% alginate; 0–0.2% chitosan: pH 4.5). The electrical characteristics, microstructure, and physical stability of the electrostatic complexes formed were determined. Under certain conditions multilayer emulsions consisting of oil droplets coated by alginate or alginate/chitosan layers were formed, whereas under other conditions microclusters consisting of aggregated oil droplets embedded within alginate or alginate/chitosan complexes were formed. The presence of the cosurfactant had a major impact on the electrical charge and dimensions of the electrostatic complexes formed. This study shows that various kinds of electrostatic complexes can be formed from charged oil droplets and charged biopolymers, and that their functional characteristics can be controlled using non-ionic cosurfactants.  相似文献   

9.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

10.
ABSTRACT: The oxidative stability of polyunsaturated lipids can be improved by incorporating them in oil droplets surrounded by positively charged whey protein isolate (WPI) membranes. This study dealt with the factors that influence the physical properties of WPI-stabilized oil-in-water emulsions at pH 3. Emulsions containing 5 to 50 wt% corn oil and 0.5 to 5.0 wt% WPI (protein-to-oil ratio of 1:10) were prepared at pH 3. The apparent viscosity of the emulsions increased appreciably at oil concentrations ≥ 35 wt%; however, the particle size was relatively independent of oil concentration. The influence of NaCl (0 to 250 m M ) on the physical properties of 28 wt% emulsions was examined. Significant increases in mean particle size, apparent viscosity, and creaming instability occurred at ≥150 m M NaCl, which were attributed to flocculation induced by screening of the electrostatic repulsion between droplets. The influence of heat treatment (30°C to 90°C for 30 min) on 28 wt% emulsions was examined in the absence and presence of salt, respectively. At 0 m M NaCl, heating had little effect on the physical properties of the emulsions, presumably because the electrostatic repulsion between the droplets prevented droplet aggregation. At 150 m M NaCl, the mean particle diameter, apparent viscosity, and creaming instability of the emulsions increased considerably when they were heated above a critical temperature, which was 70°C when salt was added before heating and 90°C when salt was added after heating. These results have important implications for the design of WPI-stabilized emulsions that could be used to incorporate functional lipids that are sensitive to oxidation, for example, ω-3 fatty acids.  相似文献   

11.
Relatively concentrated (40 wt%) O/W emulsions formulated with high-oleic sunflower oil as disperse phase, potato protein isolate as emulsifier and chitosan as stabiliser were prepared by rotor–stator/high-pressure valve/rotor–stator homogenization. The influence of chitosan concentration on the physical stability of emulsions was studied in (0.25–1) wt% range by visual inspection, rheological and microstructural techniques. Steady shear flow curves were sensitive to the occurrence of creaming upon the rise of zero-shear viscosity values. The effect of increasing concentration of chitosan on the zero-shear viscosity turned out to be dependent on emulsion ageing and always resulted in a stepwise increase of the critical shear rate for the onset of shear thinning flow. The critical oscillatory shear stress for the onset of non-linear viscoelastic behaviour was more sensitive than the critical shear rate to detect creaming in emulsions. Mechanical spectra are definitely demonstrated to be the most powerful tool to detect not only creaming but also oil droplet flocculation on account of changes in the plateau relaxation zone. CSLM micrographs supported the interpretation of dynamic viscoelastic results, especially when flocculation as well as coalescence took place. Cryo-SEM micrographs evidenced the formation of increasingly denser protein–polysaccharide networks with chitosan concentration and the fact that the latter governs the microstructure of the emulsion when reaches 1 wt% concentration promoting enhanced physical stability.  相似文献   

12.
In this study we investigated the effect of droplet size on the antimicrobial activity of emulsions containing two essential oil compounds that are known for their antimicrobial effectiveness: carvacrol and eugenol. Coarse emulsions were prepared by blending a triacylglyceride (Miglyol 812N) containing various concentrations of carvacrol or eugenol (5, 15, 30, 50 wt%) at an oil droplet mass fraction of 10 wt% with an aqueous phase containing 2 wt% Tween 80(?). Premixes were then further dispersed using a high shear blender, a high pressure homogenizer at different pressures or an ultrasonicator to produce droplets with a variety of mean diameters. Microscopy and light scattering storage stability studies over 10 days indicated that manufactured emulsions were stable, i.e. that no aggregation, creaming or other destabilization mechanisms occurred and droplet size distributions remained unchanged. The antimicrobial activity of emulsions was assessed against two model microorganisms, the Gram negative Escherichia coli C 600 and the Gram positive Listeria innocua, by determining growth over time behavior. The analysis yielded the unexpected result that emulsions with larger droplet sizes were more effective at inhibiting growth and inactivating cells than smaller ones. For example, emulsions with a mean oil droplet size of 3000 nm at a concentration of 800 ppm carvacrol completely inhibited L. innocua, while for 80 nm emulsions, only a delay of growth could be observed. Measurements of the concentration of the antimicrobial compounds in the aqueous phase indicated that concentrations of eugenol and carvacrol decreased with decreasing oil droplet sizes. Determination of interfacial tension further showed that eugenol and carvacrol are preferentially located in the oil-water interfaces. Theoretical calculations of Tween 80(?) concentrations needed to saturate interfaces suggested that in small emulsions for the given formulation less Tween 80(?) micelles are present in the aqueous phase. We therefore attribute the fact that antimicrobial nanoemulsions are less active than macroemulsions due to an increased sequestering of antimicrobials in emulsion interfaces and a decreased solubilization in excess Tween 80(?) micelles.  相似文献   

13.
In this study, development of pea (Pisum sativum) protein stabilised dry and reconstituted emulsions is presented. Dry emulsions were prepared by spray-drying liquid emulsions in a laboratory spray-dryer. The effect of drying on the physical stability of oil-in-water emulsions containing pea protein-coated and pea protein/pectin-coated oil droplets has been studied. Oil-in-water emulsions (5 wt.% Miglyol 812 N, 0.25 wt.% pea protein, 11% maltodextrin, pH 2.4) were prepared that contained 0 (primary emulsion) or 0.2 wt.% pectin (secondary emulsion). The emulsions were then subjected to spray-drying and reconstitution (pH 2.4). The stability of the emulsions to dry processing was then analysed using oil droplet size, microstructure, Zeta potential, and creaming measurements. Obtained results showed that the secondary emulsions had better stability to droplet aggregation after drying than primary emulsions. To interpret these results, we propound that pectin, an anionic polysaccharide, formed a less charged protective layer around the protein interfacial film surrounding the oil droplets that improved their stability to spray-drying mainly by increasing steric effects.  相似文献   

14.
Oil bodies, with their unique structural proteins, oleosins, are known to be useful in foods and other emulsion systems. The influence of ??, ??, and ??-carrageenans on the stability of soybean oil body emulsions at different pH values (pH 3, 4, 5 and 7) was investigated by particle electrical charge, particle size distribution, creaming stability and confocal laser scanning microscopy measurements. In acidic environment (pH 3, 4 and 5), the droplet charge of soybean oil body emulsions stabilized with carrageenan decreased with increasing carrageenan concentration for all types of carrageenan investigated, suggesting their adsorption to the oil body droplet surfaces. Extensive droplet aggregation and creaming were observed in the emulsions stabilized with ??-carrageenan at pH 3 and 5, indicating that soybean oil body droplets were bridged by carrageenan. At pH 7, there was no significant change in the droplet charge of soybean oil body emulsions stabilized with three types of carrageenan, but the emulsions stabilized with ??-carrageenan were more stable to creaming due to depletion flocculation than the emulsions stabilized with ?? or ??-carrageenan after seven days storage. The probable reason was that ??-carrageenan, which had the most densely charged helical structure, was most effective at creating highly charged interfacial membranes, thus reducing the depletion flocculation to occur.  相似文献   

15.
The creaming stability and viscosity of oil-in-water emulsions stabilized by whey protein isolate were monitored as functions of dextran sulfate (DS) and electrolyte (NaCl) concentration. At a specific DS concentration (the critical flocculation concentration, CFC), the droplets became flocculated, which promoted creaming. Addition of electrolyte caused an increase in CFC. At NaCl concentrations <0.5 wt%, addition of electrolyte decreased emulsion viscosity, but at concentrations >0.5 wt% it caused an increase in viscosity due to increased flocculation. The results were due to the influence of electrostatic screening on the effective volume of DS molecules and colloidal interactions between droplets.  相似文献   

16.
The effect of chitosan (CHI) on the stability of monodisperse modified lecithin (ML) stabilized soybean oil-in-water (O/W) emulsion was investigated. Monodisperse emulsion droplets with particle size of 24.4 ± 0.7 μm and coefficient of variation below 12% were prepared by microchannel (MC) emulsification using a hydrophilic asymmetric straight-through MC silicon 24 × 24 mm microchip consisting of 23,348 microchannels. The stability of the ML stabilized monodisperse emulsion droplets was investigated as a function of CHI addition at various concentration, pH, ionic strength, thermal treatment and freezing-thawing treatment by means of particle size and ζ-potential measurements as well as microscopic observation. The monodisperse O/W emulsions were diluted with CHI solution at various concentrations to a final droplet concentration of 1 wt% soybean oil, 0.25 wt% ML and 0–0.5 wt% CHI at pH 3. Pronounced droplet aggregation was observed when CHI was present at a concentration range of between 0.01 and 0.04 wt%. Above this concentration range, flocculations were less extensive, indicating some restabilization. ML stabilized emulsions were stable at a wide range of NaCl concentrations (0–1000 mM) and pH (3–8). On the contrary, in the presence of CHI, aggregation of the emulsion droplets was observed when NaCl concentration was above 200 mM and when the pH started to approach the pKa of CHI (i.e. ∼6.2–7.0). Emulsions containing CHI were found to have better stability at high temperature (>70 °C) in comparison to the emulsion stabilized only by ML. With sucrose/sorbitol as cryoprotectant aids, emulsions with the addition of CHI were found to be more resistant to droplet coalescence as compared to those without CHI after freezing at −20 °C for 22 h and thawing at 30 °C for 2 h. The use of CHI may potentially destabilize ML-stabilized O/W emulsions but its stability can be enhanced by selectively choosing the appropriate CHI concentrations and conditions of preparation.  相似文献   

17.
Comprehension of hen egg yolk emulsifying properties remains incomplete because competition between its various emulsifiers (proteins and lipoproteins containing phospholipids) has not been clearly elucidated and colloidal interactions between yolk-stabilised oil droplets have not been documented. Recent studies emphasised the interest of the fractionation of yolk into plasma and granules to improve this comprehension. In the present study, we characterised, concurrently, emulsion properties (oil droplet size and stability against creaming) and interface attributes (interfacial concentrations of proteins and phospholipids, SDS-PAGE profiles of adsorbed proteins and zeta potential) in oil-in-water (O/W) emulsions prepared with yolk, plasma and granules. We observed these features at four physicochemical conditions (pH 3.0 or 7.0 and at 0.15 or 0.55 M NaCl). Emulsion properties in emulsions made with yolk or plasma varied similarly as a function of pH and NaCl concentration whereas granules emulsions exhibited distinct properties. Therefore the main contributors to yolk emulsifying properties are to be sought for among plasma constituents (proteinaceous or phospholipids). Since, in plasma emulsions, variations of emulsion stability against creaming correlated exclusively to variations of protein interfacial concentration, a driving contribution of the proteinaceous part of plasma, namely apo-LDL, was hypothesised. In the pH and ionic strength ranges studied, zeta potentials of the interfaces were low, excluding extended electrostatic repulsion between oil droplets. We deduced that steric repulsion is the main interaction opposing to droplet aggregation in food emulsions made with yolk.  相似文献   

18.
This study examines the influence of interfacial composition on the freeze–thaw stability of oil-in-water emulsions. Three 5% w/w oil-in-water emulsions (5 mM phosphate buffer, pH 6.0) were prepared using the layer-by-layer electrostatic deposition method that had different interfacial compositions: (i) primary emulsion (β-Lg); secondary emulsion (β-Lg–ι-carrageenan); (iii) tertiary emulsion (β-Lg–ι-carrageenan–gelatin). The primary, secondary and tertiary emulsions were subjected to from one to three freeze–thaw cycles (−20 °C for 22 h, +40 °C for 2 h) in the absence or presence of sucrose (10% w/w), and then their stability was assessed by ζ-potential, particle size, microstructure and creaming stability measurements. In the absence of sucrose, the primary and secondary emulsions were highly unstable to droplet aggregation and creaming after three freeze–thaw cycles, whereas the tertiary emulsion was stable, which was attributed to the relatively thick biopolymer layer surrounding the oil droplets. In the presence of 10% w/w sucrose, all of the emulsions were much more stable, which can be attributed to the ability of sucrose to increase the amount of non-frozen aqueous phase in the emulsions. The interfacial engineering technology used in the study could therefore lead to the creation of food emulsions with improved stability to freezing and thawing.  相似文献   

19.
The influence of added xanthan gum on rheological and dispersion characteristics and stability of concentrated (50% w/w) corn oil-in-water emulsions, stabilized with 5% (percentage on oil amount) polyoxyethylene (20) sorbitan monooleate (Tween 80), have been investigated. Emulsion with no xanthan indicated coalescence and poor creaming stability. All emulsions, with and without xanthan, showed shear-thinning flow behavior. Addition of xanthan protected emulsions from coalescence during 15 days of storage. Increase in xanthan concentration led to decrease in droplet average radius and creaming index, and increase in elastic properties of emulsions. Decrease in the emulsions flow behavior indexes, which suggested the extent of non-Newtonian behavior of emulsions, was influenced by increase in xanthan concentration. Above 0.04% of xanthan concentration, G′ and G″ values indicated formation of weak gels. Gel structure existence arises from droplet network association, due to depletion flocculation. Standard deviation of emulsions droplet size mean diameter decreased while concentration of added xanthan increased.  相似文献   

20.
ABSTRACT: Calcium chloride (0 to 10 mM) and potassium chloride (0 to 600 mM) were added into model nutritional beverage emulsions containing 7% (w/w) soybean oil droplets and 0.35% (w/w) whey protein isolate (pH 6.7). The particle size, surface charge, viscosity, and creaming stability of the emulsions then were measured. The surface charge decreased with increasing mineral ion concentration. The particle size, viscosity, and creaming instability of the emulsions increased appreciably above critical CaCl2 (3 mM) and KCl (200 mM) concentrations because of droplet flocculation. The origin of this effect was attributed to reduction of the electrostatic repulsion between droplets due to electrostatic screening and ion binding. CaCl2 promoted emulsion instability more efficiently than KCl because Ca2+ ions are more effective at reducing electrostatic repulsion than K+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号