首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular size of amylopectin (AP) and amylose (AM), AP chain length distribution, crystallinity and granular structure (morphology and granule size distribution) of five wild type potato starches (wtps), five AM free potato starches (amfps), four high-AM potato starches (haps), one wild type cassava starch (wtcs) and one AM free cassava starch (amfcs) were investigated and related to their gelatinisation characteristics. Starches with higher levels of short chains [degree of polymerisation (DP) 6–9 and DP 10–14)] had lower gelatinisation onset (To), peak (Tp) and conclusion (Tc) temperatures, whereas higher contents of longer chains (DP 18–25 and DP 25–80) led to higher gelatinisation temperatures. Gelatinisation enthalpies (ΔH) increased with degree of crystallinity. The granules of wtps were larger than those of amfps and haps, respectively. No differences in morphology were observed between wtps and amfps granules, but the haps granules had more irregular surfaces and showed multi-lobed granules.  相似文献   

2.
Starches were isolated and characterised from 10 potato cultivars grown under the same conditions (with a commercial starch for reference). The chemical composition revealed some differences amongst the starches with protein ranging from 0.30% to 0.34%, amylose 25.2% to 29.1% and phosphorus 52.6–66.2 mg 100 g−1. High performance size-exclusion chromatography (HPSEC) fractionation of isoamylase debranched amylopectin showed that the amylopectin molecules were less branched and consisted of more B1, but less A-chains, than cereal starches. Gelatinisation onset (To), peak (Tp) and conclusion (Tc) temperatures of the native potato starches ranged from 58.7 to 62.5 °C, 62.5 to 66.1 °C and 68.7 to 72.3 °C, respectively, whilst the gelatinisation enthalpies ranged from 15.1 to 18.4 J g−1. The gelatinisation temperatures of the starches increased in common with the amounts of short and intermediate sized amylopectin chains. The 13C magic angle spinning nuclear magnetic resonance (13C CP-MAS NMR) and wide angle X-ray diffraction (XRD) data (30.6% ± 0.22% crystallinity on average) showed little variance amongst the samples. Particle sizing results, however, revealed more variance (20.6–30.9 μm mean diameter). Overall, these data reveal the subtleties of cultivar specific variation against a background of constant environmental conditions.  相似文献   

3.
The characterisation of starches from kabuli and desi type chickpea seeds was investigated by monitoring amylose content, swelling power, solubility, synaeresis, water-binding capacity and turbidity properties. Total amylose and apparent amylsoe content were 31.80% and 29.93% for kabuli and 35.24% and 31.11% for desi, respectively. The shape of starch granules varied from round to oval or elliptic. The transition temperatures (To, Tp and Tc) were (62.237, 67.000 and 72.007 °C) and (59.396, 68.833 and 77.833 °C) for kabuli and desi starches, respectively. The ΔH value of kabuli type was higher than that of desi type. The crystal type of chickpea starches was a typical CA-type pattern. Breakdown and setback viscosity of kabuli starch were lower than those of desi starch, indicating high heat and shear stability. Kabuli starch showed a higher value of Mw (5.382 × 10g/mol) than desi starch (3.536 × 10g/mol). Both kabuli and desi starches belonged to low glycaemic starches from measuring starch fractions and hydrolysis index.  相似文献   

4.
Granule sizes, macromolecular features and thermal and pasting properties of starches from seven tropical sources (Florido, Kponan and Esculenta yams, cocoyam, cassava, sweet potato and ginger) were compared with those of several well‐known cereal, legume and tuber starches. The aim of the study was to characterise some non‐conventional starches with a view to possibly marketing them. Amylose content varied from 148 mg g?1 in Esculenta starch to 354 mg g?1 in smooth pea starch. For total starches, weight‐average molar mass (M?w) ranged between 0.94 × 108 and 1.80 × 108 g mol?1 for potato and normal maize starches respectively. Gyration radius (R?G) varied from 157 nm for ginger starch to 209 nm for normal maize starch. Gelatinisation enthalpy (ΔH) ranged between 9.8 and 20.7 J g?1 for wheat and Florido starches respectively. Gelatinisation peak temperature (Tg) varied from 58.1 °C for wheat starch to 87.3 °C for ginger starch. Native starch granule mean diameter ranged between 5.1 and 44.5 µm for Esculenta and potato starches respectively. Cassava and potato starches had the highest swelling power and dispersed volume fraction at all treatment temperatures, while ginger starch had the lowest. Cocoyam starch had the highest and ginger starch the lowest solubility at 85 and 95 °C. Cassava starch was the most stable under cold storage conditions. Roots and tubers such as ginger and cassava produced in the Ivory Coast are new sources of starches with very interesting properties. Thus these starches could be isolated on an industrial level in order to market them. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
Commercial maize starches and potato starches of two cultivars differing in physicochemical composition (granule size distribution; amylose to amylopectin ratio) and crystallinity were heated to 180 °C and then cooled by fast quench using a differential scanning calorimeter (DSC), in order to produce spherulitic starch morphologies. Among the raw maize starches, waxy maize starch had highest relative crystallinity (49%) whereas a lowest crystallinity of 33–39% was calculated for high-amylose maize starches. Potato starches showed a relative crystallinity of 50%. The temperatures and enthalpies of gelatinisation and melting varied among all the starches. High-amylose maize starches showed higher transition temperatures of gelatinisation (Tgel), whereas waxy maize starch had lowest Tgel and enthalpy of gelatinisation (ΔHgel). Similarly, a considerable variation in parameters related with crystalline melting (Tm1, Tm2 and ΔHm1, ΔHm2) was observed for different starches. The superheated gels of different starches treated using DSC were subjected to polarised microscopy, to confirm the formation of spherulites. Both the high-amylose starch gels showed the presence of spherulites exhibiting birefringence and a weak crystalline pattern. No birefringence was observed for waxy maize starch gel, while potato starch gels had some birefringence. The particle size distribution of high-amylose maize starch gels analysed through Zetasizer showed the sizes of spherulitic particles fall in the range of 300 nm–900 nm. The scanning electron micrographs of the dried high-amylose maize starch gels showed the presence of round spherulites consisting of several aggregated spherulitic particles. Amylose content and melting of crystallites during heating play an important role during recrystallisation of amylose (spherulite morphologies).  相似文献   

6.
Four different starch sources, namely waxy maize, wheat, potato and pea starch were extruded with the plasticizer glycerol, the latter in concentrations of 15, 20 and 25% (w/w). The glass transition temperatures of the resulting thermoplastic products were measured by Dynamic Mechanical Thermal Analysis (DMTA). Beside mechanical and structural properties also the transition temperatures of the materials were evaluated during tensile and impact tests. Above certain glycerol contents, dependent on the starch source, a lower glass transition temperature Tg resulted in decreased modulus and tensile strengths and increased elongations. Lowering the Tg at different glycerol contents did not influence the impact strength. When the amylose/amylopectin ratio increased a decrease in Tg was found. For pea, wheat, potato and waxy maize starch the Tg was 75 °C, 143 °C, 152 °C and 158 °C, respectively. Therefore products with higher percentages of amylose are more flexible. The shrinkage of the specimens made by injection molding was considerable compared to the specimens made by pressing.  相似文献   

7.
Physical aging and glass transition characteristics of amorphous normal and waxy rice starches (11 and 15% moisture contents) were investigated under differential scanning calorimetry as function of aging time. Normal rice starch showed higher Tg than waxy rice starch. The Tg and ΔCp at glass transition gradually increased with aging time, whereas fictive temperature was slightly reduced regardless of moisture content and starch type. The relaxation enthalpy and relaxation peak temperature increased with aging time until structural equilibrium was reached. Enthalpy increase was more significant in the early stage of aging whereas temperature increase was constant during the aging period tested (120 h). Aging kinetic analysis using Cowie and Ferguson model revealed that the amorphous normal and waxy rice starches behaved in different modes for the physical aging. Relaxation distribution parameter (β) of both starches was in a range of 0.3<β<0.7, but higher at a lower moisture content, and for normal starch than for waxy starch. Maximum relaxation enthalpy for normal starch (1.10 and 2.69 J/g, respectively, at 11 and 15% moistures) was higher than those of waxy starch (0.77 and 2.48 J/g). Based on the characteristic time (tc), normal starch has slower progression toward an equilibrium than waxy starch. Overall results proved that physical aging kinetics were highly dependent on starch structure and composition.  相似文献   

8.
Starches were isolated from cassava (Manihot esculenta) and potato (Solanum tuberosum) tubers. They were further modified by acetylation. The physicochemical, functional and thermal properties of native and modified starches, prepared using acetic anhydride at different times (10 and 20 min) were compared. Potato starch (Sipiera/20) showed higher acetyl percentage and degree of substitution values than cassava (2425/20) starch when acetylated for 20 min. Proximate analysis revealed that the acetylated starches retained more moisture than the native ones. Above 75 °C, acetylation improved the water binding capacity of the native cassava starch; the same trend was observed for potato starch from 60 to 90 °C after acetylation. The X-ray powder diffraction patterns derived from acetylated potato starches were similar to its native form, which was expected as B-type pattern; the same trend was observed for modified cassava starch. However the modified starches showed increased crystalline index.  相似文献   

9.
Structural characteristics and digestibility of starches isolated from the kernels of two mango cultivars (Chausa and Kuppi) were studied and compared with those of a commercial normal corn starch. Mango kernel starches showed an A-type X-ray diffraction pattern, with relative crystallinities of 35.4% and 38.3%, respectively for Kuppi and Chausa cultivars. The structural characterisation obtained, using high performance size exclusion column chromatography connected to multi-angle laser light scattering and refractive index detectors (HPSEC-MALLS-RI), revealed that the mango kernel starches had lower molecular weight (Mw) and radius of gyration (Rg) of amylopectin and amylose compared to those of corn starch. The Mw of amylopectin for Chausa and Kuppi starches were 179 × 106 and 140 × 106 g/mol, respectively. The amounts of readily digestible starch (RDS) and slowly digestible starch (SDS) were lower for mango kernel starch than those of corn starch. Resistant starch (RS) contents in the mango kernel starches (75.6% and 80.0%, respectively) were substantially higher than those of corn starch (27.3%). The glycemic index (GI) values for mango kernel starches were 48.8 and 50.9 (for Chausa and Kuppi, respectively), whereas that of corn starch was 74.8, indicating that the mango kernel starch granules were highly resistant to digestion with significant contents of RS.  相似文献   

10.
The effect of starch gelatinization on glass transitions in a starch/water model system and how the concentrations of added solutes (sucrose and sodium chloride) affect the glass transition temperatures of the gelatinized starch solution was investigated. The starch suspension samples were heat treated in a Differential Scanning Calorimeter (DSC) under different time and temperature regimes to achieve different degrees of gelatinization. The gelatinization characteristics (onset, peak and end temperatures and enthalpy) and the glass transition values of a potato starch were determined using the DSC. The results showed that the starch concentrations had no effect on gelatinization characteristics and the Tg′ of the gelatinized potato starch but had clearly increased their ΔCp in the Tg′ region. Annealing at a temperature slightly below the Tg′ of −5 °C, led to maximal freeze‐concentration in the total/partial gelatinized starch and a higher Tg′ value at about −3 °C was obtained. The Tg′ values of the totally gelatinized starch samples were slightly lower than those of partially gelatinized samples. The Tg′ of the gelatinized starch decreased with increasing concentrations of sucrose or sodium chloride. Sodium chloride had a stronger depressing effect on Tg′ than sucrose. © 2000 Society of Chemical Industry  相似文献   

11.
Physicochemical properties [swelling power (SP), pasting behaviour and retrogradation] of five wild type (wt), five amylose free (amf), four high-amylose (ha) potato starches (ps) and one wt and amf cassava starch (cs) were investigated. While swelling of wtps occurred in two phases, amfps showed a very fast swelling and no gel of swollen granules was observed at higher temperatures (>90 °C). Haps underwent only restricted swelling. SP of cassava starches were lower than those of potato starches. Wtps leached mainly amylose (AM) during heating at low temperatures. Molecules of higher molecular weight (MW) leached out at higher temperatures. Longer amylopectin (AP) chains [degree of polymerisation (DP) > 18] inhibited swelling while short chains (DP < 14) favoured swelling. Starch pasting behaviour of 5.0 and 8.0% starch suspensions was studied using Rapid Visco Analyser (RVA). For 5.0% suspensions, increased levels of high-MW AP and decreased levels of AM molecules led to higher peak viscosity. Longer AP chains (DP > 18) depressed peak viscosity, while short chains (DP < 14) increased peak viscosity for both concentrations. At 8.0%, peak viscosity increased with starch granule size. After 1 day of storage of gelatinised starch suspensions, wtps and especially amfps showed only limited AP retrogradation. In contrast, the high enthalpies of retrograded AP (ΔHretro) and peak and conclusion temperatures of retrogradation (Tp,retro and Tc,retro) of haps suggested partial cocrystallisation between AM and AP. Chains with DP 18–25 seemed to be more liable to AP retrogradation. Wtcs and amfcs did not retrograde at room temperature.  相似文献   

12.
Debranching starch by pullulanase is considered to improve the RS content of starch which is widely used to produce the starch‐based foods with high‐health benefit impacts. In this study, the cassava and potato starches were debranched by pullulanase, followed by an autoclave treatment and storage at −18°C, 4°C, or 25°C to investigate their crystallinity and functional properties. After debranching, the potato starch contained significantly higher CL (35.4 glucose units) than did the cassava starch (32.4 glucose units). The debranched cassava and potato starches after retrogradation at the storage temperatures had a typical B‐type crystalline structure although the native cassava and potato starches exhibited the different crystalline forms (A‐ and B‐type, respectively). The RS contents of the debranched cassava and potato starches significantly improved with higher RS content of the debranched potato starch than that of the debranched cassava starch at the same storage condition. The storage temperature significantly affected the RS formation of the debranched starches with the highest RS content at storage temperature of −18°C (35 and 48% for the debranched cassava and potato starches, respectively). The debranched starches had significantly lower viscosities and paste clarities but higher solubilities than did the native starches. As a result, the debranched cassava and potato starches can be considered for use not only in functional foods with enhanced health benefits but also in pharmaceutical and cosmetic industries.  相似文献   

13.
The thermal properties of seven commercial modified cassava starches, including oxidized, acetylated, cross‐linked, and combined acetylated and cross‐linked starches were studied by differential scanning calorimetry (DSC) in the glassy and rubbery states. Increase in gel hardness in the rubbery state during storage was also monitored, as well as gelatinization behavior. The modified starches were prepared from granular starch and had a degree of substitution in the range 0–0.053. The glass transition temperatures (Tg) of the modified starches were 3–6°C significantly lower than that of the non‐modified starch. The physical aging peak temperatures were also significantly reduced by 2–3°C, compared to the non‐modified starch, while aging enthalpies increased. Starch modifications did not decrease amylopectin retrogradation significantly. During storage, the oxidized starch gel became significantly harder than the non‐modified starch gel, while the hardness of the acetylated and/or cross‐linked starch gels was significantly reduced, which confirmed that acetylation or cross‐linking can decrease hardness, even when the extent of modification is limited. Different modifications controlled different properties of the starch system, with cross‐linking and acetylation influencing the gelatinization behavior and the changes in starch gel texture during storage, respectively.  相似文献   

14.
The rapid hydrolysis of potato starches differing in phosphorus content, as well as sweet potato, cassava and yam starches, was accomplished by treatment of gelatinised starches with bacterial liquefying α-amylase at 50 °C for 1 h, followed by Bacillus licheniformis α-amylase at 55 °C up to 24 h, and then by glucoamylase at 40 °C for a further 24 h. Among the potato starches, the high-phosphorus starches showed higher starch resistant capacity than the medium-phosphorus starches, as well as other tuber and root starches. The hydrolysis rate of tuber and root starches was not greatly influenced by their amylose content and median granule size. Only glucose was detected in the almost completely hydrolysed tuber and root starch samples, indicating that the concomitant enzymes treatment could hydrolyse both the α-1,4 and α-1,6 linkages of the starches examined.  相似文献   

15.
In the present study, three potato varieties were treated with chlorpropham (CIPC, 35 ppm), γ-irradiated (0.1 kGy) and stored for up to 5 months at 8 °C, and the physicochemical properties and in vitro starch digestibility of native and cooked starches were investigated. Sprouting was found to be satisfactorily suppressed by γ-irradiation and CIPC treatment. However, irradiation increased total free glucose content in two potato varieties, and decreased the thermal transition and pasting temperature of starch. The crystallinity of starch in irradiated potatoes decreased significantly (p ? 0.05) which may explain its decreased resistant starch content. Sprout inhibiting treatments and storage had no effect on in vitro starch digestibility in cooked starches, but cooling cooked starch significantly (p ? 0.05) increased its resistant starch content.  相似文献   

16.
The aim of this study was to analyze the influence of chemically modified starches (HDP and ADA) and high amylose corn starch (HACS) on the rheological and thermal properties of gluten-free dough based on corn and potato starches with pectin and guar gum. The results indicate that the dough with the addition of modified starch behaves as weak gel, the value of storage modulus G′ significantly depends on the frequency and the values of tan δ = G″/G′ range from 0.32 to 0.49. Significant influence of hydroxypropylated distarch phosphate (HDP) on the viscoelastic properties of dough was observed. The share of modified starch in the system caused a decrease of the instantaneous and viscoelastic compliance. It also influenced the retardation time and zero shear viscosity. The application of modified starches (HDP and ADA) for dough preparation did not have much impact on the pasting characteristics. However, significant reduction of the onset and end viscosities were found for high amylose starch (HACS). Thermograms obtained for individual dough systems were characterized by the presence of two peaks, associated with the existence of two different starches in the system. No significant effect of modified starch on the onset temperature (TO) and only a slight effect of HACS starch on gelatinization enthalpy were observed. However, the level of addition of individual starch affected peak and end (TE) temperatures, depending on the type of preparation.  相似文献   

17.
A.M. Elmonsef Omar 《LWT》2007,40(3):536-543
Glass transition temperatures were determined for dehydrated lactose/salt mixtures with various water contents and water activities, and state diagrams were established. Crystallization behaviour was studied for pure amorphous lactose stored at various relative water vapour pressures (RVP). Furthermore, glass transitions temperatures and time-dependent lactose crystallization of freeze-dried lactose and lactose/CaCl2, lactose/NaCl, lactose/MgCl2 and lactose/KCl mixtures in molar ratios of 9:1 were determined. Glass transition temperatures (Tg) of lactose powder as determined by differential scanning calorimetry (DSC) was lower than that of lactose/CaCl2 (9:1), and lactose/MgCl2 (9:1), but it was slightly higher than the Tg of lactose/NaCl (9:1), and lactose/KCl (9:1). Lactose/KCl had the lowest glass transition temperature, but it had about the same crystallization temperature as lactose/NaCl, and lactose/MgCl2. The glass transition temperatures decreased as water contents increased. The critical water contents and water activities at 23 °C were predicted using data on glass transition temperature and water sorption. Pure lactose had a different critical water activity and water content from lactose/salt mixtures. The critical values of lactose/CaCl2 (9:1) were the highest. Loss of sorbed water, indicating lactose crystallization, was observed in lactose and lactose/salt mixtures stored above the critical RVP.  相似文献   

18.
19.
The starches separated from four different Dioscorea opposita Thunb. cultivars were investigated for morphological, thermal, crystal, and physicochemical properties, such as amylose content, swelling power, solubility and water-binding capacity properties. Amylose content of D. oppositastarches from different cultivars ranged from 20.74% to 25.94%. The shape of starch granules separated from different D. opposita Thunb. cultivars varied from round to oval or elliptic. The mean particle diameter of starches ranged from 23.39 to 26.87 μm. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) were determined using differential scanning calorimetry (DSC). To, Tp and Tc varied from 73.6 to 74.8, 78.8 to 81.0, and 83.3 to 87.2 °C, respectively. D. opposita cv. Jinchengerhao starch showed the highest ΔHgel values (12.48 J/g) while D. opposita cv. Baiyu starch showed the lowest values (8.413 J/g). The crystal type of starches separated from different D. opposita cultivars was a typical CB-type pattern. The degrees of crystallinity of the four D. opposita cultivars starches were about 50.52%, 32.99%, 33.57% and 36.16%, respectively.  相似文献   

20.
The suspensions containing starch submicron particles prepared through a novel high pressure homogenization and mini-emulsion cross-linking technology were spray dried to obtain cross-linked starch submicron particles. Dryer inlet temperature and feed flow rate were varied to investigate their effect on moisture content, glass transition temperature (Tg), morphology of the starch submicron particles. The residual moisture content of the particles was below 10% (w/w) and particle had collapsed morphology. The Tg of these submicron particles varied between 54 and 57 °C corresponding to moisture contents of 9.78% and 8.31%, respectively and the cross-linking and the high hydrogen bond density in these submicron particles strongly affected the moisture dependence in their Tg. The X-ray diffraction and FT-IR experiments revealed that these starch submicron particles were in amorphous glassy state, fully cross-linked and had very high extent of hydrogen bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号