首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biodegradable films based on starch, sodium caseinate, glycerol and lipids (oleic acid and/or α-tocopherol) were obtained and evaluated in terms of microstructure, mechanical behaviour, barrier and optical properties and antioxidant capacity. The effect of film storage time on these properties was also analysed. The lipid incorporation provoked phase separation due to the different interaction between each polymer and lipids, although structural rearrangement of components during storage could be deduced from the change in mechanical behaviour. After storage, all films showed similar mechanical properties, but lipid containing films were more stretchable. Lipid addition did not induce a notable decreased in water vapour permeability of the films, but oxygen permeability highly increased when they contained oleic acid. All films were highly transparent, with very small differences among formulations, although their gloss values increased when lipids were added. The incorporation of α-tocopherol greatly increased the antioxidant capacity of the films which affected oxygen permeability.  相似文献   

2.
Tianyi Liu  Ying Ma  Sophia Xue  John Shi 《LWT》2012,46(1):156-163
Maize starch powder was exposed to a 60Co source (0, 1, 2, 5, 10, 20, 50, 100, 200, or 500 kGy) and the effects of γ-irradiation treatment on the structure and physicochemical properties of the starch granules were studied. The results showed that peak, trough, final, and setback viscosities were significantly reduced, whereas the solubility was increased following irradiation. Gelatinization temperature and enthalpy decreased significantly when the dose is higher than 50 kGy. On the surface, the starch granules did not display any visible physical change up to a 500 kGy dose was. X-ray diffraction (XRD) analysis showed that the relative crystallinity of starch decreased slightly, and the starch exhibited an A-pattern without any change. Fourier transform infrared (FTIR) spectral intensity at 1018 cm?1 increased with the irradiation dose up to 200 kGy. Irradiation dose was positively correlated with solubility and negatively correlated with relative crystallinity. There were high positive correlations between thermal properties and pasting properties.  相似文献   

3.
The rheological properties, structure and synergistic interactions of whey proteins (1–7%) and inulin (20% and 35%) were studied. Gelation of whey proteins was induced with Na+. Inulin was dissolved in preheated whey protein solutions (80 °C, 30 min). Inulin gel formation was strongly affected by whey proteins. The presence of whey proteins at a level allowing for protein gel network formation (7%) significantly increased the G′ and G″ values of the gels. Scanning electron micrographs showed a thick structure for the mixed gel. Whey proteins at low concentrations (1–4%) were not able to form a gel; further, these low concentrations partly or wholly impaired formation of a firm inulin gel. Although interactions between inulin and whey proteins may be concluded from hydrophobicity measurements, the use of an electrophoretic technique did not show any inulin–whey protein complexes.  相似文献   

4.
Zhao  Shenchi  Li  Xin  Hu  Gongshe  Liang  Xi  Liu  Chengguo  Liu  Qian 《Food science and biotechnology》2021,30(9):1171-1181
Food Science and Biotechnology - The rheological behaviors, structural properties and freeze-thaw stability of starch isolated from Tetonia barley (Normal genotype, Reg. No. CV-334, PI 646199) and...  相似文献   

5.
This study mainly explored that the influence of wheat starch source on the rheology behaviours and structural properties of gluten–starch dough, and then the model doughs were prepared by the AK58 wheat gluten and three types of starches from strong (ZM366S), medium (AK58S) and weak gluten wheat (ZM103S) during mixing were studied. The damaged starch content of wheat starch was positively correlated with the wheat gluten strength, while the granule size was negatively. The G', G\" and the extension resistance of ZM366S dough were higher than those of other doughs, which implied the source of starch also had a significant influence on the rheological properties. CLSM also observed that ZM366S was more closely bound to the gluten protein network. The glutenin macropolymer (GMP) content of ZM366S model dough was the highest, while the SH content was the lowest. Decreases in elasticity, extension and GMP, and small increase in SH content were displayed during dough mixing. Molecular forces were varied with different wheat starch and mixing time. The covalent bond was the main force between ZM103S and gluten, whereas the hydrogen and covalent bonds were the main force between ZM366S or AK58S and gluten. The interactions between ZM366 starch and gluten were stronger than others starch.  相似文献   

6.
The time-dependent flow properties of starch–milk–sugar (SMS) pastes have been studied. The flow properties were assessed from the measurement of the shear stress versus time of shearing at constant shear rate. Corn and wheat starches were used in this study, while the sugars were glucose, sucrose, and fructose. The Weltman model was used to evaluate the flow properties of SMS pastes prepared under different conditions. SMS pastes heated at 95 and 85 °C exhibited a thixotropic behavior, while pastes heated at 75 °C behaved like a rheopectic fluid. It was noted that the thixotropy occurred at high shear stress (above 50 Pa), and the rheopexy occurred at low shear stress (below 45 Pa). The degree of thixotropy, as assessed by the Weltman model parameters, increased significantly with starch concentration, and with less pronounced effect with sugar concentration. The effect of sugar type on the degree of thixotropy of SMS pastes heated at 95 °C decreased in the following order: fructose>sucrose>glucose. The type of starch played a role in the time-dependent flow properties of the SMS paste, with a general conclusion that wheat starch had a greater degree of thixotropy than corn starch.  相似文献   

7.
Amylose can form inclusion complexes with diverse small molecules. Modified starch has different and unique properties compared with its native counterpart. In this study, chemically/enzymatically modified high-amylose maize starches were used to make inclusion complexes with α-naphthol, and the physical properties of complexes and their influences on the rheology of wheat starch were characterized. The results showed that modification of starch had little influence on the wide angle X-ray diffraction pattern of complex (eightfold single helix), but did so on the complexation index and precipitation yield. Inclusion complexes with chemically modified starch showed a lower range of thermostability and recrystallization temperatures. Addition of complex considerably influenced the rheological properties of wheat starch, and the effect was dependent on the type of modified starch used. It may be concluded that starch inclusion complexes, with a range of properties and potential food applications, may be feasibly prepared by using diverse modified high-amylose maize starches.  相似文献   

8.
The aims of this study were to investigate genetic and nongenetic variation in the degree of glycosylation of κ-casein (κ-CN) and to estimate the effects of glycosylated (G-κCN) and unglycosylated (U-κCN) κ-CN contents on milk coagulation properties of Simmental cows. Measures of contents of the main casein fractions, G-κCN, and U-κCN, and assessment of genotypes at CSN2, CSN3, and BLG were obtained by reversed-phase HPLC analysis of 2,015 individual milk samples. Content of total κ-CN (κ-CNtot, g/L) was the sum of G-κCN and U-κCN, and the glycosylation degree of κ-CN (GD) was measured as the ratio of G-κCN to κ-CNtot. Rennet coagulation time (RCT) and curd firmness were measured by using a computerized renneting meter. Measures of curd firmness were adjusted for RCT before statistical analysis. Variance components of κ-CNtot, G-κCN, U-κCN, and GD were estimated by Bayesian procedures and univariate linear models that included the class effects of the herd-test-day, parity, days in milk, genotypes at milk protein genes, and animal. These class effects, those of G-κCN, U-κCN, and content of other caseins, and the linear effect of milk pH were accounted for by models investigating the influence of κ-CN glycosylation on coagulation properties. The GD ranged from 22 to 76%, indicating that variation in G-κCN depends on the variation both in κ-CNtot and in the efficiency of κ-CN glycosylation. Genotype CSN3 BB exhibited high G-κCN and U-κCN relative to that of CSN3 AA. Heritability of G-κCN, U-κCN, and GD was high and ranged from 0.46 to 0.56. A large proportion of the additive genetic variation in G-κCN and U-κCN was attributable to influence of CSN and BLG, but these genes did not affect variation in GD, and across-genotypes differences in the trait were small or trivial. Average RCT of the milk class having the highest G-κCN was, on average, 2 min (standard deviation 0.5) shorter than that of the lowest class. Conversely, U-κCN and content of other caseins were not associated with any effect on RCT, except for a slight delay in coagulation when U-κCN was very high. Curd firmness increased when the contents of both κ-CN fractions and other caseins increased. This study provides evidence that the positive association between RCT and κ-CN content is exclusively attributable to the glycosylated fraction of the protein. Because exploitable additive genetic variation in G-κCN exists, improvement of κ-CN composition through selective breeding might be an effective way to enhance milk coagulation properties.  相似文献   

9.
《Food chemistry》1999,64(2):177-183
The renewed interest in using enzymes from thistles of the genus Cynara in the making of traditional ewes’ milk cheese prompted us to investigate the effect of vegetable and animal rennet on proteolysis during ripening of Los Pedroches cheese. Casein hydrolysis was found to be much more extensive and faster in cheese made by using vegetable rennet (the amount of soluble nitrogen at 60, 80 and 100 days of ripening was more than 28% greater than that in cheese produced using animal rennet). The levels of insoluble Tyr and Trp were higher in cheese produced with vegetable rennet. PAGE, using gels containing 7 M urea, revealed decreased contents in residual αs-CN and β-CN, as well as markedly increased levels of the more mobile components in cheese produced from vegetable rennet at the end of ripening. On the other hand, the degree of proteolysis in terms of NPN or its main components (peptides, amino acids and ammonia) was similar in cheese produced using animal or vegetable rennet.  相似文献   

10.
11.
The microstructure and elastic modulus (G′) of phase-separated gelatin + hydroxypropyl starch gels containing emulsified olive oil were investigated. Either droplet-type or bicontinuous gel morphologies were obtained depending on the initial placement (gelatin or starch) and proportion of added oil as well as the presence of polysorbate 20 dispersed in the oil. A gradual increase in oil content generally led to an increase in the volume fraction and microstructural interconnectivity of the oil-containing phase. However, addition of polysorbate 20 increased the tendency of the dispersed oil droplets to reside at the gelatin–starch periphery and potentially relocate to the phase initially lacking any oil. Compared to the control phase-separated gelatin–starch system, the largest increase in G′ was seen upon addition of oil to the gelatin phase of the phase-separated systems whereas the smallest rise occurred with polysorbate 20-containing oil added to the starch phase. This strongly indicated that the dispersed oil phase acted as an active filler within the phase-separated gel matrix. As each microstructure imparted its own rheological properties, these observations demonstrated the possibility of creating a diverse group of phase-separated emulsion gel microstructures with user-defined G′ values, depending on the proportion and initial location of the emulsified oil within the gel as well as the presence of a surfactant.  相似文献   

12.
The objective of this study was to investigate the effect of the addition of methylcellulose and carboxymethylcellulose on the thermal, mechanical and water adsorption properties of starch-based films plasticized with glycerol or polyethylene glycol (PEG). Mechanical tests showed that as the methylcellulose and carboxymethylcellulose proportion increased, starch films became more resistant to break, resulting in higher TS values. Besides there has been a positive effect on the elasticity of starch films realized by a considerable increase in E% values. Depending on the plasticizer type, either single or dual glass transitions were seen in DSC thermograms. One glass transition temperature was observed for films plasticized with glycerol, on the contrary, dual glass transitions were detected for PEG plasticized films. This behavior was attributed to the phase separation of the PEG. In addition, the presence of an endothermic peak in the thermograms of PEG plasticized films was taken as another indicator of the phase separation. As a result, it was suggested that PEG was not as compatible as glycerol with the composite polysaccharide matrix and plasticizer type was the main factor that shaped the thermal profiles of the film samples. Water adsorption isotherm data showed that samples displayed nonlinear sorption profile which is typical for hydrophilic films. In all films tested, equilibrium moisture contents, increased almost linearly up to a aw of 0.65–0.85, beyond where a sharp increase was noted. Adsorption data was adequately fitted by BET and GAB models. Eventually, it can be concluded that film forming properties of starch can be improved by incorporation of methylcellulose and carboxymethylcellulose to the polymer matrix.  相似文献   

13.
The viscoelastic and textural properties of freshly prepared and freeze-thawed sago starch–sugar gels were studied in comparison with other native starches from corn, wheat, tapioca, and potato. The gelatinisation and retrogradation properties of starches were studied using a DSC while the pasting properties of starch–sugar mixtures during the cooking period were studied using a starch pasting cell. The freeze-thaw stability of gels was evaluated by gravimetric measurements of the water of syneresis. The different starches gave properties which varied following to their botanical sources. High-amylose cereal starches (wheat and corn) produced harder gels, while low-amylose root starch (tapioca) produced softer gels. Sago and potato gels showed close similarities in their viscoelastic and textural characteristics. Although the freeze-thaw cycle greatly increased the viscoelasticity and hardness of these two gels, reheating at high temperature significantly reduced these negative effects and resulted in partial recovery of the gel structures. Sago starch produced gels with very low syneresis and high cohesiveness, implying its potential use as a gelling agent in the frozen food industries.  相似文献   

14.
BACKGROUND: The thermal unfolding and rheological properties of patatin gels were compared with those of commonly used proteins (β‐lactoglobulin, ovalbumin, glycinin). RESULTS: A significant difference between these proteins was observed in both the denaturation temperature (59 °C for patatin; about 20 °C lower than the other proteins) and the onset temperature of gel formation (50–60 °C, compared to 70–85 °C for the other proteins). At low ionic strength the minimal concentration was only 6% (w/v) for patatin, compared to 8–11% for the other proteins. This effect was attributed to the relatively high exposed hydrophobicity of patatin as determined by hydrophobic interaction chromatography. For gels compared at ‘iso‐strength’, the frequency dependence was found to be close to identical, while small differences were observed in the strain at fracture. CONCLUSIONS: Patatin was found to form gels with comparable small‐deformational rheological properties as typical food proteins. In addition, at concentrations where the elastic modulus was similar for all proteins, the frequency and strain dependence were also comparable. From this it is concluded that patatin is a promising protein to be used in food applications as a gelling agent. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Antimicrobial activity of edible coating solutions based on chitosan and blends of chitosan–tapioca starch with or without potassium sorbate (KS) addition was studied. The agar well diffusion assay showed an antagonist effect on the efficiency of chitosan against Lactobacillus spp. when KS and/or tapioca starch were present. A salmon slice coating assay showed that the chitosan solution was the best coating since aerobic mesophilic and psychrophilic cell counts were reduced, pH and weight loss remained acceptable throughout refrigerated storage, extending global quality to 6-days. Chitosan–tapioca starch based films reduced Zygosaccharomyces bailii external spoilage in a semisolid product but were not effective against Lactobacillus spp. The results suggest that antibacterial action depended on the application technique, due to the fact that chitosan is more available in a coating solution than in a film matrix. Interactions between chitosan–starch and/or KS could affect film physical properties and the antimicrobial activity of chitosan. The addition of chitosan reduced water vapor permeability and solubility of starch films.  相似文献   

16.
Abstract: The role of different types of emulsifying salts—sodium citrate (TSC), sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STPP) and tetrasodium pyrophosphate (TSPP)—on microstructure and rheology of “requeijão cremoso” processed cheese was determined. The cheeses manufactured with TSC, TSPP, and STPP behaved like concentrated solutions, while the cheese manufactured with SHMP exhibited weak gel behavior and the lowest values for the phase angle (G”/G’). This means that SHMP cheese had the protein network with the largest amount of molecular interactions, which can be explained by its highest degree of fat emulsification. Rotational viscometry indicated that all the spreadable cheeses behaved like pseudoplastic fluids. The cheeses made with SHMP and TSPP presented low values for the flow behavior index, meaning that viscosity was more dependent on shear rate. Regarding the consistency index, TSPP cheese showed the highest value, which could be attributed to the combined effect of its high pH and homogeneous fat particle size distribution.  相似文献   

17.
The aim of this study was to evaluate the transfer of the most widely used antibiotics in dairy goats from milk to cheese as well as their effect on the cheese-making process and cheese characteristics during ripening. Antibiotic-free milk was spiked individually with 7 veterinary drugs (amoxicillin, benzylpenicillin, cloxacillin, erythromycin, ciprofloxacin, enrofloxacin, and oxytetracycline) at an equivalent concentration of the European Union maximum residue limit. Spiked goat milk was used to make mature Tronchón cheeses, which were analyzed at 0, 30, and 60 d of maturation to determine pH, chemical composition, proteolytic and lipolytic activities, and color and textural properties. A sensory evaluation of 60-d ripened cheeses was carried out. Cheeses from raw antibiotic-free goat milk were made simultaneously to be used as reference. The cheese-making process was unaffected by the presence of most antibiotics evaluated. Only erythromycin and oxytetracycline significantly increased the time required for cheese production (122 ± 29 and 108 ± 25 min, respectively). However, variable amounts of antibiotics, ranging from 7.4 to 68%, were transferred from milk to cheese, with oxytetracycline and quinolones showing the highest retention rates. In general, antibiotic residues present in the cheeses at the beginning of maturation decrease significantly along time. Thus, β-lactams and erythromycin residues were not detectable after 30 d of ripening. However, relatively high concentrations of enrofloxacin (148 ± 12 µg/kg) and ciprofloxacin (253 ± 24 µg/kg) residues were found in the cheeses after 60 d of maturation. The quality characteristics of the Tronchón cheeses were only slightly affected by such substances, with few significant differences in the free fatty acid concentration and color and textural properties of the cheeses. Results herein indicate that the use of goat milk containing antibiotics, such as quinolones, at the European Union maximum residue limit for cheese production could adversely affect the safety of the final products because relatively high concentrations of these substances could be retained in soft and semi-mature cheeses, making it necessary to assess the risk for consumer health. Studies on the partition of the antibiotic substances during cheese-making, using specific technologies, would be convenient to guarantee the safety of cheese and related products.  相似文献   

18.
19.
Results are presented on the effect of the number of successive freeze-thaw cycles and different final thawing conditions on rheological properties of frozen vegetable purees using a specific mixing device (helical ribbon impeller) to follow changes in dynamic properties. The number of freeze-thaw cycles ranged from zero (that is, thawing only) to four and were applied to three types of commercial product (broccoli-potato, carrot-potato and celery-potato). After freeze-thaw cycles, purees were thawed at room temperature, by microwave at three different settings, and in a saucepan. Rheological properties were affected more by the thawing conditions than by the number of cycles applied. Saucepan thawing increased the values of these properties as a result of an apparent heavy water loss during heating. The storage modulus (G') was the rheological property most affected by either effect in both broccoli- and carrot-potato purees, showing that their behaviour is predominantly elastic, with phase angles in the region of 5-12°. After one or two cycles (depending on thawing conditions), broccoli-potato presented much greater elasticity and apparent freeze-thaw stability than the others. Celery-potato puree presented the highest fluidity, possibly because its initial higher water content meant that loss modulus values were more significantly affected by thawing conditions. Results showed a complex dependence of the dynamic properties on structural factors of the purees as well as on processing parameters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号