首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
上海市区原水及自来水中两虫分布调查   总被引:8,自引:2,他引:6  
对上海市区15座水厂的原水和自来水的调查表明,长江原水及黄浦江上游原水中均有贾第鞭毛虫和隐孢子虫存在,以贾第鞭毛虫为主,原水中两虫的总体污染程度较低;在所有自来水样品中均未发现两虫存在;根据调查结果提出了去除两虫的手段和预警监测方法.  相似文献   

2.
采用膜溶解、密度梯度分离纯化结合免疫荧光染色法对饮用水中的“两虫”(隐孢子虫和贾第鞭毛虫)进行定性与定量检测,以大幅降低检测成本,简化操作。结果表明,使用Percoll-蔗糖介质可取得良好的分离纯化效果,其卵囊和孢囊初始回收率分别为56%和35%,远高于EPA1623方法的要求。利用该方法对河网型水源水及水厂滤后水进行了检测,发现10L水源水中有1~3个隐孢子虫和0~2个贾第鞭毛虫,但在50L滤后水中均未检出“两虫”。  相似文献   

3.
密度梯度分离纯化/免疫荧光技检测饮用水中"两虫"   总被引:1,自引:0,他引:1  
采用膜溶解、密度梯度分离纯化结合免疫荧光染色法对饮用水中的"两虫"(隐孢子虫和贾第鞭毛虫)进行定性与定量检测,以大幅降低检测成本,筒化操作.结果表明,使用Percoll-蔗糖介质可取得良好的分离纯化效果,其卵囊和孢囊初始回收率分别为56%和35%,远高于EPAl623方法的要求.利用该方法对河网型水源水及水厂滤后水进行了检测,发现10 L水源水中有1-3个隐孢子虫和0-2个贾第鞭毛虫,但在50 L滤后水中均未检出"两虫".  相似文献   

4.
某市贾第鞭毛虫和隐孢子虫污染现状   总被引:10,自引:3,他引:10  
利用免疫荧光分析技术对南方某市饮用水源水、自来水厂出水和污水处理厂进、出水中贾第鞭毛虫和隐孢子虫(两虫)的污染状况进行了调查,并就自来水厂常规处理工艺对两虫的去除特性进行了研究.结果显示:该市饮用水源水中的两虫密度分别为2~120个/100L和0~24个/100 L,自来水厂出水分别为0~12个/1000 L和0~8个/1000 L,污水处理厂进水中的两虫密度分别为7 200~18 300个/L和69~1 210个/L,二级处理出水的分别为6~153个/L和1~46个/L;混凝沉淀和过滤对两虫有较好的去除效果.  相似文献   

5.
水环境中微生物贾第鞭毛虫和隐孢子虫是两种严重危害水质安全的致病性原生寄生虫,主要通过水和食物等传播疾病,人和动物感染“两虫”所患疾病分别称为贾第鞭毛虫病和隐孢子虫病。当前,人们逐渐认识到其对人类的危害不容忽视。因此研究适合我国广大供水企业采用可靠的“两虫”检测方法极其重要,对保障我国城市供水水质安全具有重要的意义。现就“两虫”在水环境中的检测方法予以综述。  相似文献   

6.
宁波市东钱湖水厂供水规模50万m^3/d,其出厂水质要求高。现阶段出厂水浊度≤0.1NTU,隐孢子虫和贾第虫无检出,灭活率分别达到99%和99.9%,其余指标均优于国家标准。工程设计采用强化常规水处理工艺来满足现阶段出厂水质要求,后期根据原水水质变化和水厂运行情况,增加臭氧-活性炭深度处理工艺。本文主要介绍了强化常规处理的工程措施。  相似文献   

7.
常规工艺对浊度的去除效率及浊度预警水平   总被引:1,自引:0,他引:1  
分析了原水泵站及水厂各工艺单元出水一整年的浊度数据,发现1月-4月的原水浊度较低,如果碱铝投加量低于一定限值(如8.88mg/L)则易造成出水浊度偏高,需要控制混凝剂投加量以保证混凝效果。清水池内浊度容易升高,这可能与滤池初滤水的水质较差有关。根据各工艺单元对浊度的一般去除效率和出厂水浊度标准,提出了原水和工艺单元出水的浊度预警水平,这对于水厂常规工艺的运行具有指导性意义。  相似文献   

8.
成都市自来水的生物稳定性研究   总被引:4,自引:0,他引:4  
叶劲 《中国给水排水》2003,19(12):45-47
研究了成都市第六水厂原水、出厂水、管网水中AOC的变化,结果表明传统水处理工艺对AOC(可同化有机碳)有一定的去除作用。由于不同季节原水水质情况不同,AOC去除率在44%~82%之间波动。用氯胺取代液氯进行消毒可使自来水中的AOC浓度明显降低。  相似文献   

9.
BAC滤池对浊度和颗粒数的控制研究   总被引:1,自引:0,他引:1  
传统的贾第鞭毛虫和隐孢子虫(简称“两虫”)检测方法存在诸多不足,为此选用浊度和颗粒数作为“两虫”的替代指标,以对浊度和颗粒物的去除率来衡量生物活性炭(BAC)滤池对“两虫”的控制效果。试验结果表明:采用颗粒数表征滤后水水质比采用浊度更适宜。过滤初期颗粒数从峰值降到50个/mL以下所需的时间比浊度降到0.1NTU所需的时间多1h左右。正常过滤期间BAC滤池进水浊度一般在0.1NTU以下,经过BAC滤池处理后,浊度得到进一步降低,平均去除率为52.7%。炭层对浊度的去除率为56.4%,其出水浊度基本上都低于0.05NTU,而砂层对浊度不但没有去除能力,反而使出水浊度平均上升了约3.7%。炭层对颗粒物的平均去除率为33.3%,砂层对颗粒物的平均去除率为8.5%。  相似文献   

10.
《Planning》2020,(1)
目的了解内蒙古牧区小学生隐孢子虫和贾第鞭毛虫感染情况,为预防工作提供科学依据。方法选取包头某旗小学牧区学生为对象,利用采样袋采集新鲜粪便,低温保存运至实验室。采用改良抗酸染色检测隐孢子虫,卢戈氏碘液染色检测贾第鞭毛虫。结果共采集小学生粪便样本191份,隐孢子虫总感染率为37. 2%(71/191),男生和女生的感染率分别为40. 0%(44/110)和33. 3%(27/81),差异无统计学意义(χ~2=0. 888,P>0. 05);贾第鞭毛虫总感染率为14. 7%(28/191),男生和女生的感染率分别为14. 5%(16/110)和14. 8%(12/81),差异无统计学意义(χ~2=0. 003,P> 0. 05);隐孢子虫和贾第鞭毛虫混合感染率为5. 8%(11/191),男生和女生的混合感染率分别为7. 3%(8/110)和3. 7%(3/81),差异无统计学意义(χ~2=1. 095,P>0. 05)。结论牧区生源小学生中隐孢子虫和贾第鞭毛虫感染率较高,当地卫生部门应加强卫生宣传和管理。  相似文献   

11.
A one-year monitoring of Cryptosporidium oocysts and Giardia cysts was conducted at a water purification plant. A total of 13 samples of 50 L river source water and 26 samples of 2,000 L-filtered water, treated by coagulation flocculation, sedimentation and rapid filtration, were tested. Prior to conducting a survey of a water purification plant, we developed a method for concentrating Cryptosporidium oocysts from a large volume of raw or filtered water using a hollow fiber ultrafiltration (UF) membrane, and this procedure was adapted to survey a water purification plant. Cryptosporidium oocysts were detected in all of the 13 raw water samples. The geometric mean concentration was 40 oocysts 100 L. Giardia cysts were detected in 12 of 13 raw water samples (92%) and the geometric mean concentration was 17 cysts/100 L. Probability distributions of both Cryptosporidium oocyst and Giardia cyst concentration in raw water were nearly lognormal. In filtered water samples, Cryptosporidium oocysts were detected in 9 of the 26 samples (35%) with the geometric mean concentration of 1.2 oocysts /1,000 L and Giardia cysts in 3 samples (12%) with 0.8 cysts/1,000 L. The estimated log10 removal efficiency of Cryptosporidium oocysts and Giardia cysts by rapid-sand filtration was 2.47 and 2.53, respectively. Empty particles were removed at a higher log10 than intact oocysts and cysts. The efficiency of particle removal in the rapid sand filtration process tends to be reduced under cold-water conditions. Close management is necessary in the winter when the water temperature is low.  相似文献   

12.
Continuous flow centrifugation (CFC) was used in conjunction with immunomagnetic separation (IMS) and immunofluorescence microscopy (IFA) and nested PCR to recover and detect oocysts of Cryptosporidium parvum and cysts of Giardia intestinalis from 10L volumes of source water samples. Using a spiking dose of 100 oocysts, nine of 10 runs were positive by IFA, with a mean recovery of 4.4+/-2.27 oocysts; when another 10 runs were analyzed using nested PCR to the TRAP C-1 and Cp41 genes, nine of 10 were positive with both PCR assays. When the spiking dose was reduced to 10 oocysts in 10L, 10 of 12 runs were positive by IFA, with a mean oocyst recovery of 3.25+/-3.25 oocysts. When 10 cysts of Giardia intestinalis were co-spiked with oocysts into 10L of source water, five of seven runs were positive, with a mean cyst recovery of x=0.85+/-0.7. When 10 oocysts (enumerated using a fluorescence activated cell sorter) were spiked into 10L volumes of tap water, one of 10 runs was positive, with one oocyst detected. For the majority of the source water samples, turbidities of the source water samples ranged from 1.1 to 22 NTU, but exceeded 100 NTU for some samples collected when sediment was disturbed. The turbidities of pellets recovered using CFC and resuspended in 10 mL of water were very high (exceeding 500 NTU for the source water-derived pellets and 100 NTU for the tap water-derived pellets). While not as efficient as existing capsule-filtration based methods (i.e., US EPA methods 1622/1623), CFC and IMS may provide a more rapid and economical alternative for isolation of C. parvum oocysts from highly turbid water samples containing small quantities of oocysts.  相似文献   

13.
Recreational beach water samples collected on weekends and weekdays during 11 consecutive summer weeks were tested for potentially viable Cryptosporidium parvum oocysts and Giardia lamblia cysts using the multiplexed fluorescence in situ hybridization (FISH) method. The levels of oocysts and cysts on weekends were significantly higher than on the weekdays (P<0.01). Concentrations of oocysts in weekend samples (n=27) ranged from 2 to 42 oocysts/L (mean: 13.7 oocysts/L), and cyst concentration ranged from 0 to 33 cysts/L (mean: 9.1 cysts/L). For the samples collected on weekdays (n=33), the highest oocyst concentration was 7 oocysts/L (mean: 1.5 oocysts/L), and the highest cyst concentration was 4 cysts/L (mean: 0.6 cysts/L). The values of water turbidity were significantly higher on weekends than on weekdays, and were correlated with the number of bathers and concentration of C. parvum oocysts and G. lamblia cysts (P<0.04). The study demonstrated positive relationships between number of bathers and levels of waterborne C. parvum oocysts and G. lamblia cysts in recreational beach water. It is essential to test recreational waters for Cryptosporidium and Giardia when numbers of bathers are greatest, or limit the number of bathers in a recreational beach area.  相似文献   

14.
Keeley A  Faulkner BR 《Water research》2008,42(10-11):2803-2813
Relative changes in the microbial quality of Lake Texoma, on the border of Texas and Oklahoma, were investigated by monitoring protozoan pathogens, fecal indicators, and factors influencing the intensity of the microbiological contamination of surface water reservoirs. The watershed serves rural agricultural communities active in cattle ranching, recreation, and is a potential drinking water source. A total of 193 surface water samples were tested over a 27-month period to determine levels of parasite contamination. The overall occurrence of Cryptosporidium oocysts was higher in both frequency and concentration than Giardia cysts. Cryptosporidium oocysts were found in 99% and Giardia cysts in 87% of the samples. Although Cryptosporidium and Giardia occurrence were significantly but not strongly correlated, all other correlation coefficients including turbidity and total dissolved solids were non-significant. Statistically supportable seasonal variations were found suggesting that Cryptosporidium and Giardia were higher in summer and fall than in other seasons of the year. While Cryptosporidium levels were correlated with rainfall, this was not the case with Giardia. The maximum numbers for both protozoan parasites were detected from a site impacted by cattle ranching during calving season. Restriction fragment length polymorphism analysis was used for confirmation of Cryptosporidium in surface waters influenced by agricultural discharges. As we had expected, oocysts were of the bovine type indicating that the Cryptosporidium parvum detected in surface waters perhaps came from cattle living in the watershed.  相似文献   

15.
The presence of waterborne enteric pathogens in municipal water supplies contributes risk to public health. To evaluate the removal of these pathogens in drinking water treatment processes, previous researchers have spiked raw waters with up to 10(6) pathogens/L in order to reliably detect the pathogens in treated water. These spike doses are 6-8 orders of magnitude higher than pathogen concentrations routinely observed in practice. In the present study, experiments were conducted with different sampling methods (i.e., grab versus continuous sampling) and initial pathogen concentrations ranging from 10(1) to 10(6) pathogens/L. Results showed that Cryptosporidium oocyst and Giardia cyst removal across conventional treatment were dependent on initial pathogen concentrations, with lower pathogen removals observed when lower initial pathogen spike doses were used. In addition, higher raw water turbidity appeared to result in higher log removal for both Cryptosporidium oocysts and Giardia cysts.  相似文献   

16.
Hsu BM  Yeh HH 《Water research》2003,37(5):1111-1117
Giardia and Cryptosporidium have emerged as waterborne pathogens of concern for public health. The aim of this study is to examine both parasites in the water samples taken from three pilot-scale plant processes located in southern Taiwan, to upgrade the current facilities. Three processes include: conventional process without prechlorination (Process 1), conventional process plus ozonation and pellet softening (Process 2), and integrated membrane process (MF plus NF) followed conventional process (Process 3). The detection methods of both parasites are modified from USEPA Methods 1622 and 1623. Results indicated that coagulation, sedimentation and filtration removed the most percentage of both protozoan parasites. The pre-ozonation step can destruct both parasites, especially for Giardia cysts. The microfiltration systems can intercept Giardia cysts and Cryptosporidium oocysts completely. A significant correlation between water turbidity and Cryptosporidium oocysts was found in this study. The similar results were also found between three kinds of particles (phi=3-5,5-8 and 8-10 microm) and Cryptosporidium oocysts.  相似文献   

17.
In this study, two types of drinking water treatment facilities (two conventional drinking water treatment plants (DWTPs) and two compact units (Cus)) were compared referring to their production capacity. Water samples were collected from three main points: (a) different water treatment steps (b) washings of sand filters and (c) distribution system at different distances from the water treatment plants. Both viruses and protozoa were concentrated from each water sample by adsorption and accumulation on the same nitrocellulose membrane filters (0.45 microm pore size). Enteroviruses were detected by plaque infectivity assay in BGM cells and HAV, HEV and Norovirus were detected by RT-PCR. Giardia and Cryptosporidium were detected by conventional staining methods and PCR. The results revealed that enterovirus load at the intake ranged between 10-15 PFU/L for the two compact units and between 4.5 and 75 PFU/L for the two conventional DWTPs. The virus load in distribution system of the first type DWTPs at 1 km from the plant was the same as that of the intake. Viruses in the other type of treatment plants CUs at 1, 5 and 7 km, were much reduced. Investigation of raw water sediments of the two DWTPs showed enterovirus counts between 12 and 17.5 PFU/L. Virus count was reduced in sand of filters after washing. Giardia cysts were equally detected by microscopy and PCR in only intake samples of EL-Hawamdia CU (33.3%) and Meet Fares DWTP (50%). Cryptosporidium oocysts were equally detected by microscopy and PCR in intake samples of Abo EL-Nomros CU (100%), EL-Hawamdia CU (66.7%) and Fowa DWTP (50%). At Meet Fares DWTP three positive intake samples for Cryptosporidium were detected by PCR, compared with only two positive samples by microscopy. Giardia cysts and Cryptosporidium oocysts were detected in raw water sediment and sand of filters before washing. Only one sample from Meet Fares DWTP sand of filters after washing was positive for both Giardia and Cryptosporidium. It can be concluded that the poor microbial quality of the water may be due to improper operational skills and management of the various water treatment plants (especially at the two high capacity treatment plants).  相似文献   

18.
Hsu BM  Huang C  Pan JR 《Water research》2001,35(16):3777-3782
The laboratory-scale filtration tests of Giardia cysts and Cryptosporidium oocysts in both 2 mm-phi glass beads and 2 mm-phi polystyrene beads filters were conducted to investigate their filtration behaviors. The protozoan parasites were used as target particles, while the chemical system altered by changing the electrolyte concentration and pH. The results significantly indicate that ionic strength have a positive effect on the removal efficiencies for Giardia cysts and Cryptosporidium oocysts. The removal efficiency of two filters for Giardia cysts slightly decreased from pH 2.4 to 8.7 and decreased significantly in pH as pH up to 8.7, while that for Cryptosporidium slightly rippled beyond pH 8.7, and with the decrease in pH up to pH 8.7. The experimental collision efficiencies from the interactions between colloids and the filter media were calculated with a semi-empirical approach of the single sphere model and clean-bed filtration theory. The results also indicated that experimental collision efficiencies for (oo)cysts corresponded to the (oo)cysts removal efficiencies in all trials, and oocysts exhibits higher collision efficiencies than cysts.  相似文献   

19.
Monitoring of Cryptosporidium and Giardia river contamination in Paris area   总被引:1,自引:0,他引:1  
This study evaluates the protozoan contamination of river waters, which are used for drinking water in Paris and its surrounding area (about 615,000 m(3) per day in total, including 300,000 m(3) for Paris area). Twenty litre samples of Seine and Marne Rivers were collected over 30 months and analyzed for Cryptosporidium oocysts and Giardia cysts detection according to standard national or international methods. Cryptosporidium oocysts and Giardia cysts were found, respectively, in 45.7% and 93.8% of a total of 162 river samples, with occasional high concentration peaks. A significant seasonal pattern was observed, with positive samples for Cryptosporidium more frequent in autumn than spring, summer and winter, and positive samples for Giardia less frequent in summer. Counts of enterococci and rainfalls were significantly associated with Giardia concentration but not Cryptosporidium. Other faecal bacteria were not correlated with monitored protozoan. Marne seems to contribute mainly to the parasitic contamination observed in Seine. Based on seasonal pattern and rainfall correlation, we hypothesize that the origin of contamination is agricultural practices and possible dysfunction of sewage treatment plants during periods of heavy rainfalls. High concentrations of protozoa found at the entry of drinking water plants justify the use of efficient water treatment methods. Treatment performances must be regularly monitored to ensure efficient disinfection according to the French regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号