首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38–0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 °C, respectively.  相似文献   

2.
对一种新型平板热管散热器冷却大功率LED芯片阵列进行实验研究。在自然对流冷却条件下,分析了平板热管散热器的启动特性、均温特性以及通电电流、倾角对其传热性能的影响。利用热电转换方法得到LED芯片的结温变化。实验结果表明:平板热管散热器的总热阻在0.3053~0.3425℃/W间,且散热器整体温度分布均匀合理,具有很强的散热能力;LED结温在47.9~59.0℃间,远低于110℃。  相似文献   

3.
为解决LED散热问题,制作了一种一体化平板热管,搭建了平板热管实验台以研究此平板热管的传热性能,设计了模拟热源的保温方案.为了模拟LED芯片的发热,制作了模拟芯片热源,并对实验结果的不确定度进行分析.通过实验研究了加热功率、充液率和工质对平板热管传热性能的影响.实验结果表明:此平板热管具有良好的均温特性.在所测试的功率范围内,蒸发腔热阻随着功率的上升而降低.充液率方面,此平板热管的最佳充液率为40%.在测试的3种工质中,去离子水的传热效果最好.  相似文献   

4.
The package and system level temperature and thermal stress distributions of 10 W light emitting diode (LED) with 4 chips and 100 W LED with 100 chips were investigated using finite element analysis. The chips were arranged on a Si sheet which is soldered on the copper/diamond composite slug with very high conductivity. The experimental results show that the maximal temperature appears in the chips of both two high power LEDs packages. Compared with the 10 W LEDs package with 4 chips array, the heat issue caused by stacking and coupling of the heat in 100 W LEDs package with 100 chips array is more serious. The chip temperature in the center of the array is much higher, and it decreases with the distance between the chip and the center of LEDs increases. Great thermal stress lies between the chips and the solder, which will reduce the reliability of the package.  相似文献   

5.
An active cooling solution based on close-looped micro impinging jet is proposed for high power light emitting diodes (LEDs). In this system, a micro pump is utilized to enable the fluid circulation, impinging jet is used for heat exchange between LED chips and the present system. To check the feasibility of the present cooling system, the preliminary experiments are conducted without the intention of parameter opti-mization on micro jet device and other system components. The experiment results demonstrate that the present cooling system can achieve good cooling effect. For a 16.4 W input power, the surface temperature of 2 by 2 LED array is just 44.2℃ after 10 min operation, much lower than 112.2℃, which is measured without any active cool-ing techniques at the same input power. Experimental results also show that increase in the flow rate of micro pump will greatly enhance the heat transfer efficiency, how-ever, it will increase power consumption. Therefore, it should have a trade-off be-tween the flow rate and the power consumption. To find a suitable numerical model for next step parameter optimization, numerical simulation on the above experiment system is also conducted in this paper. The comparison between numerical and ex-periment results is presented. For two by two chip array, when the input power is 4 W, the surface average temperature achieved by a steady numerical simulation is 34℃, which is close to the value of 32.8℃ obtained by surface experiment test. The simu-lation results also demonstrate that the micro jet device in the present cooling sys-tem needs parameter optimization.  相似文献   

6.

带有微散热器的金属基板散热性能研究

秦典成1,梁可为2

(1.广东省LED封装散热基板工程技术研究中心,广东 珠海519180;

2.乐健科技(珠海)有限公司,广东 珠海519180)

创新点说明:

本文借鉴热电分离式设计理念,将传统金属基板的金属基座加工成凸台结构,并以凸台作为微散热器(Micro Heat Exchanger,MHE)贯穿介电层作为热源的安放点,将传统金属基板(Regular MCPCB)的导热路径由“线路层-介电层-金属基座”变为现在的“线路层-微散热器-金属基座”,大幅提高金属基板的导热能力。

研究目的:

针对传统金属基板导热率过低,无法满足大功率LED封装散热需求的技术难题,以现有的传统金属基板为基础进行结构方面的创新,以期大幅提高金属基板的导热能力,从而解决大功率LED封装散热的技术瓶颈。

研究方法:

本文首先对目前大功率LED散热基板材料的研究现状进行阐述,然后针对现有的散热基板难以满足大功率LED封装散热需求的事实,提出基于热电分离式理念,对传统金属基板结构进行创新改进设计出一种带有微散热器的金属基板(MHE MCPCB),并与导热率为4 W/(m.K)进行对比,研究两种不同结构的金属基板对同款13W的LED的散热效果有何差异。

研究结果:

经对比研究表明,在线路层、绝缘层及金属基厚度大致相同的条件下,带有微散热器的金属基板较之传统的4 W/(m.K)金属基板,其导热率有明显的提升。具体表现为,对于13W的LED模组,当基板底面温度控制在25±1℃的前提下,前者LED结温为49.72℃,后者LED结温为73.14℃,且前者对应的LED的光学性能也明显优于后者。经研究发现,因MHE MCPCB中微散热器/绝缘层界面的存在,使界面两侧形成一个较大的界面热阻,此热阻将热源所散发的大部分热量限制在微散热中,而微散热器为金属材质且与基座连为一体,能够迅速高效地将这部分热量传递至金属基座,然后再传递至外部热沉,从而突破了传统MCPCB中热量需经导热率较低的绝缘层传递至金属基座的局限,散热能力由此而大幅提升,有效改善了LED的光学性能。

结论:

因微散热器/绝缘层界面处界面热阻的存在,大部分热量被限制在微散热器所构成的区域内,而微散热器为金属材质,导热率极高,能够起到较好的热传递效果,从而使得金属基板的导热性能有明显的提升,极大地改善了LED的光学性能。

关键词:微散热器;金属基板;散热能力; LED;光学性能

  相似文献   

7.
为提高相变蓄热装置的性能,基于平板热管技术设计了一套相变蓄热装置,将熔点58益的工业石蜡作为该蓄热装置的蓄热材料,对平板微热管阵列在蓄/放热过程的均温性能、蓄热装置内部石蜡温度变化以及蓄热装置的蓄/放热效率进行实验分析,同时对不同供/取热流体温度和流量的实验条件下蓄热装置蓄/放热特性进行研究.结果表明:平板微热管阵列在蓄/放热过程中性能稳定,蓄热装置蓄/放热效果良好;在供/取热流体流量为2.0 L/min,供热流体温度为80益,取热流体温度为20益的实验条件下,计算得到该蓄热装置平均蓄热功率、放热功率分别为662、764 W.  相似文献   

8.
In this paper, a novel heat sink, cooled by natural convection, with phase transition in the circulation loop was designed, and the heat sink was applied on averaging temperature and cooling the electronic equipment. The working fluid in the heat sink was driven by the capillary pump. Numerical simulations were performed, to study the heat transfer performance of two systems with various heating power, filling ratios and refrigerants. The influences of above elements on temperature uniformity of two systems were also studied and the thermal performances of two systems were compared. The volume of fluid (VOF) model was utilized to simulate fluid motion in ANSYS FLUENT. The simulation results indicate that the temperature differences of the system comprising two substrates (system 1) are very small under suitable filling ratio conditions, and the thermal performance of system 1 is preferable to the system comprising one substrate (system 2) at the same volume. Besides, the simulation results also show that the system using R245fa possesses excellent temperature uniformity for the same filling ratio and heating power. Finally, the experiments were investigated and the experimental results proved the correctness of the theoretical model.  相似文献   

9.
Laser assisted machining (LAM) has difficulties in estimating temperature after applying a LAM process due to its very small heat input area, large energy and movement. In particular, in the case of laser assisted turning (LAT) process, it is more difficult to estimate the temperature after preheating because it has a shape of ellipse when a laser heat source is rotated. A prediction method and thermal analysis method for heat source shapes were proposed as a square shaped member was preheated. The temperature distribution was calculated according to the rotation of the member. Compared with the results of the former study, the maximum temperature of the calculation results, 1 407.1 °C, is 8.5 °C higher than that of the square member, which is 1 398.6 °C. In a LAT process for a square member, the maximum temperature is 1 850.8 °C. It is recognized that a laser power control process is required because square members show a maximum temperature that exceeds a melting temperature at around a vertex of the member according to the rotation.  相似文献   

10.
摘 要:低温环路热管(Loop heat pipe, LHP)是一种高效的两相传热装置,常被用在航天热控系统中。为探究用于空间探测项目中180~230 K环路热管的合适工质,采用乙烯、乙烷和丙烯为工质对LHP在不同热沉温度下的启动特性、工作温度对热负荷增大的响应变化及稳态传热热阻进行了实验研究。实验和分析结果表明启动前蒸发器和补偿器温度低于工质临界温度至少10 K时,LHP均能以5 W的热负荷成功启动。启动前蒸发器温度相近时,乙烷LHP和丙烯LHP的启动温升均在2 K以内,乙烷LHP启动时间短于丙烯LHP,工质汽化潜热和液体粘度差异是造成LHP启动时间差异的重要因素。工质对LHP工作温度随热负荷增大的响应影响不明显:蒸发器温度均随热负荷的增加而先减小后增大,最低工作温度出现于20~30 W,LHP达到稳定状态的时间随热负荷增大而缩短。工质能明显的影响LHP的稳态传热热阻,工质在外环路的压降是其影响LHP稳态传热热阻的重要因素,而工质的气相压降占外环路总压降的绝大部分:小的气相压降对应小的稳态传热热阻,同热负荷下的乙烯LHP气相压降小于乙烷LHP和丙烯LHP,且气相压降均随温度升高而减小,对应的乙烯LHP稳态传热热阻小于乙烷LHP和丙烯LHP,且传热热阻都随温度升高而减小,实验得到的LHP最小稳态传热热阻达到0.21 K / W。  相似文献   

11.
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using α-Al2O3 , Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (Wa ), bulk density (Db ), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3 , and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material.  相似文献   

12.
热阻网络模型在微槽冷却热沉优化设计中的应用   总被引:1,自引:0,他引:1  
基于热阻网络模型,以热阻和压降作为目标函数建立了微槽冷却热沉的多目标优化模型,采用序列二次规划(SQP)方法对微槽的结构尺寸进行了优化设计。对于冷却尺寸为L×W=6 mm×6 mm,功率为100 W的芯片的热沉,优化后微槽宽度和高度分别为120μm和815μm,相应地总热阻为0.413 K/W。对优化后的微槽冷却热沉采用计算流体动力学(CFD)方法进行了数值模拟。模拟结果与热阻网络模型预测的结果吻合得很好。  相似文献   

13.
The heat transfer characteristics of feedthrough flange under high alternating current excitation were investigated by three-dimensional finite element model. The correlations between the heat transfer behaviors and system parameters including applied current, ceramic thickness and working time were discussed comprehensively. A remarkable absorbed power beyond 100 W in flange would be produced by the electromagnetic field from wires. Under natural cooling condition, there is an obvious temperature rise about 40°C in the flange center after 10 min of current excitation. Three types of water cooling solutions acting on flange surface, e.g. line type, circle type and S type solutions, were proposed to reduce the flange temperature under high alternating current and long working time condition. By the S type water cooling mode, the best cooling effect can be achieved that the maximum temperature rise is about 20°C and the average temperature rise is less than 5°C.  相似文献   

14.
This work focuses on the efficiency of the LED acting as the heat sink containing Phase Change Material (PCM). Three different heat sink configurations (H-1, H-2, and H-3) are used in this study. Input power and the number of fins are altered to find their effect on junction temperatures, luminous flux, and thermal resistance. The junction temperature of heat sink H-3 with PCM decreased by 3.1 % when compared with heat sink devoid of PCM at 10 W. The thermal resistance of the heat sink H-3 is reduced by 18.2 % when compared to its counterpart devoid of PCM at 10 W. The luminous flux of the PCM filled heat sink H-3 is found to increase by 12.15 % against the PCM not filled heat sink H-1 at 10 W. The H-3 heat sink with PCM showed superior performance because of the enhanced natural convection and conduction in bulk PCM with fins, and with added high latent heat capacity of PCM.  相似文献   

15.
A simplified dual-pressure ammonia-water absorption power cycle (DPAPC-a) using low grade energy resources is presented and analyzed. This cycle uses turbine exhaust heat to distill the basic solution for desorption. The structure of the cycle is simple which comprises evaporator, turbine, regenerator (desorber), absorber, pump and throttle valves for both diluted solution and vapor. And it is of high efficiency, because the working medium has large temperature difference in evaporation and small temperature difference in absorptive condensation, which can match the sensible exothermal heat resource and the cooling water simultaneously. Orthogonal calculation was made to investigate the influence of the working concentration, the basic concentration and the circulation multiple on the cycle performance, with 85–110 °C heat resource and 20–32°C cooling water. An optimum scheme was given in the condition of 110 °C sensitive heat resource and 20 °C cooling water, with the working concentration of 0.6, basic concentration of 0.385, and circulation multiple of 5. The thermal efficiency and the power recovery efficiency are 8.06 % and 6.66%, respectively. The power recovery efficiency of the DPAPC-a is 28.8% higher than that of the steam Rankine cycle (SRC) and 12.7% higher than that of ORC (R134a) under the optimized situation.  相似文献   

16.
The operating instability of a dual compensation chamber loop heat pipe (DCC-LHP) including temperature hysteresis, reverse flow and temperature oscillation is described and explained in this paper. Test results indicate that the steady state operating temperature under the variable conductance mode is not the same during the power cycle tests with the same heat load, and it is lower during the power reduction cycle than that during the power increase cycle. Orientation has an effect on the heat load range when temperature hysteresis occurs, and the effect of power variation amplitude can be ignored. Reverse flow tends to occur in some of the startups at low heat loads, even if vapor existed in the vapor grooves initially, which is caused by a higher pressure inside the wick due to evaporation in the evaporator core or vapor penetration into it. Temperature oscillation tends to occur in some of the startups at low head loads or some steady-state operations at high heat loads. Especially when the compensation chamber with the bayonet through is above the evaporator, the incidence rate of temperature oscillation is high. Supported by the National Natural Science Foundation of China (Grant No. 50676006)  相似文献   

17.
In order to develop further the application of high temperature heat pipe in hypersonic vehicles thermal protection,the principles and characteristics of high temperature heat pipe used in hypersonic vehicles thermal protection were introduced.The methods of numerical simulation,theory analysis and experiment research were utilized to analyze the frozen start-up and steady state characteristic of the heat pipe as well as the machining improvement for fabricating irregularly shaped heat pipe which is suitabl...  相似文献   

18.
通过实验测试结合理论分析,研究嵌入式微通道冷却系统的传热特性及局部热点的尺度效应. 测试芯片加工采用MEMS工艺,微通道层与顶层之间的连接采用硅硅直接键合,芯片与电路板(PCB)之间的连接采用倒装焊接. 研究结果表明,采用嵌入式微通道设计极大地缩短了微芯片到微通道的导热距离,可以显著地减小微芯片到环境的热阻. 根据测试结果可知,在100 W/cm2均匀热流密度的条件下,使用6.84 mW/cm2的泵功,可以将模拟IC热源的温升控制到小于40 K,能效比超过14 000. 在非均匀热流密度的条件下,局部热点的存在会增大导热热阻在总热阻中的占比,局部热点尺度越小,热点附近的侧向热传导越严重,导热热阻越大,这减小了对流换热热阻在热点区域总热阻中的占比,使得增大对流换热系数带来的总热阻降低效果减弱.  相似文献   

19.
基于地热井内流体的流动换热方程以及岩石的能量方程,研究井直径、岩石导热系数、井深和地温梯度对采出水温度和采热功率的影响. 结果表明:单井采出水温度、采热功率和岩石温度场均随时间衰减,第1、10、20个供暖季对应的平均采热功率分别为755.01、660.02、639.42 kW,上述数据可用于热泵选型. 对于20 a的供暖期,当两井间距为200 m时不会产生热干扰;岩石导热热阻远大于井内对流热阻和井壁导热热阻,降低岩石的导热热阻是提高采热功率的最有效手段;增加井直径和岩石导热系数可以降低岩石导热热阻;岩石导热系数每增加0.5 W/(m·K),采热功率增加100 kW;增加地温梯度和井深可以增大岩石和流体之间的传热温差,提高采热功率;地温梯度每增加10 K/km,采热功率增加213.54 kW.  相似文献   

20.
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux, which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop, the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle, the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases, with the increase of the bending angles and the bending position closer to the vapor section. However, the effects of bending radius can be ignored. The result agrees well with the predicted equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号