首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
研究了微波辐射下丙烯酸(AA)和丙烯酰胺(AM)的水溶液聚合反应,合成了P(AA-AM)高吸水性树脂,探讨了中和度、引发剂用量、交联剂用量、单体配比、微波功率、反应时间对高吸水性树脂吸水倍率的影响,与敞开体系水溶液聚合法进行了对比,并用红外光谱对产物结构进行了表征。结果表明,当丙烯酸中和度为80%,引发剂用量0.8%,交联剂用量0.02%,m(AM)∶m(AA)=1∶10,微波功率1 000 W,辐射时间60 s时,产物吸水倍率和吸盐水倍率最佳,达1 350 g/g和125 g/g。  相似文献   

2.
以丙烯酰胺(AM)、丙烯酸(AA)和对苯乙烯磺酸钠(SSS)为单体,过硫酸钾为引发剂,N,N'-亚甲基双丙烯酰胺为交联剂,采用溶液聚合法制备出AM - AA - SSS三元共聚物.结果表明,聚合最佳条件为:AA用量10 mL,AM用量3.3g,SSS用量0.5 g,引发剂用量0.040 g,交联剂用量0.010 g,反应温度60℃.在此条件下,试样的吸蒸馏水倍率为259g/g,吸盐水倍率为42 g/g.  相似文献   

3.
以羧甲基纤维素(CMC)、蒙脱土(MMT)、丙烯酰胺(AM)为原料,过硫酸铵-亚硫酸氢钠为引发剂,N,N-亚甲基双丙烯酰胺为交联剂,采用水溶液聚合法,合成出羧甲基纤维素接枝丙烯酰胺/蒙脱土(CMC-g-AM/MMT)。考察了单体配比、引发剂用量、交联剂用量等聚合工艺条件对CMC-gAM/MMT吸水倍率的影响。结果表明,在反应温度为40℃,CMC用量为2 g的条件下,当m(MMT)∶m(CMC)为0.4∶1.0,m(AM)∶m(CMC)为8∶1,引发剂用量为1.0%(占原料的质量分数),交联剂用量为0.4%(占原料的质量分数),氢氧化钠(质量分数40%)用量为8 m L时,合成产物CMC-g-AM/MMT的吸水倍率最大,其吸蒸馏水倍率、吸盐水倍率分别为1 280,112 g/g。  相似文献   

4.
紫外辐射法合成四元共聚高吸水性树脂及其性能研究   总被引:1,自引:0,他引:1  
采用紫外固化法,以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、淀粉为单体,以N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,在不加引发剂和无任何气氛保护下合成了AA/AM/AMPS/淀粉共聚高吸水性树脂,考察了反应条件对树脂吸液倍率的影响,并采用红外、偏光显微镜对树脂的分子结构及表面形态进行了表征。通过正交实验得到最佳反应条件为:n(AMPS):n(AA):n(AM)=1:1:1,pH=6.5,w(MBA)=0.02%,w(淀粉)=12.5%,光照时间为4 min。在优化条件下合成的高吸水性树脂吸蒸馏水倍率为1 194 g/g,吸盐水倍率为38 g/g。并且树脂吸水过程符合一级动力学,  相似文献   

5.
反相悬浮聚合法合成耐盐高吸水树脂   总被引:4,自引:0,他引:4  
以环己烷为分散介质,山梨糖醇硬脂酸酯(Span60)为悬浮稳定剂,K2S2O8-NaHSO3氧化还原体系为引发剂,N,N’-亚甲基双丙烯酰胺为交联剂,丙烯酸(AA)、丙烯酰胺(AM)为单体,采用反相悬浮聚合法,合成了一种高吸水树脂(SAR)。考察了单体摩尔比、反应时间、反应温度、悬浮稳定剂用量、交联剂用量以及引发剂用量对高吸水树脂吸水量的影响。结果表明,当单体AA与AM摩尔比7:3,反应温度55℃,反应时间4h,悬浮稳定剂占单体总量的3.5%,交联剂用量占单体总量的0.035%,引发剂用量占单体总量的3.5%时制备的高吸水树脂吸水量最高,达104mL/g以上。  相似文献   

6.
以丙烯酸(AA)和腐植酸(HA)为原料,N,N-二亚甲基双丙烯酰胺(MBA)为交联剂,过硫酸铵(APS)为引发剂,采用水溶液聚合法合成了一系列高HA含量的AA-HA复合吸水树脂。研究了MBA用量、APS用量、单体浓度、AA的中和度、反应温度等对AA-HA复合吸水树脂吸液性能的影响,当m(AA):m(HA)=4:1,4:2,4:3,4:4时,在适宜条件(n(NaOH):n(AA)=0.6:1、80℃、c(AA)=2.31 mol/L)下合成的AA-HA复合吸水树脂的吸液率分别为635,570,350,300 g/g。探讨了AA-HA复合吸水树脂在不同pH溶液、不同离子强度盐溶液和不同环境温度中的吸液性能。采用FTIR方法对AA-HA复合吸水树脂的结构进行了表征,表征结果显示,AA-HA复合吸水树脂为接枝共聚物。  相似文献   

7.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、顺丁烯二酸酐(MA)为单体,N,N-亚甲基双丙烯酰胺(NMBA)为交联剂,采用紫外光固化法,在不加引发剂和无任何气氛保护下合成了AMPS/AM/MA高吸水性树脂。利用FTIR和SEM方法研究了AMPS/AM/MA高吸水性树脂的分子结构和树脂吸水后的表面形态。考察了反应条件对AMPS/AM/MA高吸水性树脂吸水倍率的影响。实验结果表明,合成高吸水性树脂的优化条件为:n(AMPS)∶n(AM)∶n(MA)=2.0∶1.5∶0.3,w(NMBA)=0.06%(基于单体的总质量),pH=3.4,紫外光固化时间5.5 min。在优化条件下合成的AMPS/AM/MA高吸水性树脂的吸水倍率为1 627 g/g,且吸水速率较快,保水性能良好。  相似文献   

8.
实验以黄原胶(XG)为改性基体材料,丙烯酸(AA)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为接枝单体,并添加膨润土黏土,采用水溶液聚合法合成了黄原胶/膨润土/P(AA-co-AMPS)/复合高吸水性树脂,采用单因素实验考察了影响树脂性能的各种因素。较佳工艺条件为:w(膨润土)=15%,m(AMPS)=1.7g,w(引发剂)=0.8%,w(交联剂)=0.045%,聚合温度70℃,树脂最大吸水倍数数为873.4g/g,最大吸盐水倍数达108.9g/g。分析表明黄原胶、AA、AMPS和膨润土之间可能发生了交联共聚反应,膨润土的加入使复合树脂的热稳定性增加。  相似文献   

9.
聚丙烯酸钠的合成   总被引:6,自引:2,他引:4  
蒋永华  彭晓宏 《石油化工》2003,32(6):513-516
采用均匀设计法设计聚丙烯酸钠树脂的合成实验,考察了单体用量、引发剂用量、交联剂用量及反应温度等因素对树脂吸水倍率的影响。通过回归分析得到树脂吸水倍率的关联式,分析可知引发剂用量、交联剂用量对树脂吸水倍率影响显著。优化的合成条件(质量分数):水50%~60%;单体35%~45%;引发剂0 01%~0 03%;交联剂0 004%~0 008%;反应温度50~70℃。在此合成条件下,吸水倍数可达650~700g/g,吸盐水倍数为80~90g/g。  相似文献   

10.
以丙烯酰胺(AM)、中和度为70%的丙烯酸(AA)和海藻酸钠(SA)为原料,过硫酸钾(KPS)为引发剂,在水溶液聚合法合成AM-AA共聚物/SA复合材料的基础上,添加淀粉和交联剂硝酸铝,采用造粒工艺制备了一种新型堵水剂AM-AA共聚物/SA复合材料小球(粒径约为3 mm),考察了SA用量、硝酸铝用量、淀粉用量和AA与AM单体的配比对堵水剂吸水性能的影响。实验结果表明,堵水剂的最佳制备条件为:1.4 mol/L AM、60 m L水、KPS用量1.0%(w)(基于单体AM和AA的质量)、SA用量6.0%(w)(基于AA,AM,SA的总质量)、硝酸铝用量0.6%(w)(基于复合材料的质量)、淀粉用量15.0%(w)(基于复合材料的质量)、n(AA)∶n(AM)=1.3、75℃、3 h。在该条件下制备的堵水剂吸水倍率最大,可达26.8 g/g,且凝胶强度好。  相似文献   

11.
超强复合高吸水树脂的合成及性能评价   总被引:1,自引:0,他引:1  
丙烯酸、丙烯酰胺共聚合成了高分子超强吸水树脂,讨论了原料配比、温度、中和度、引发剂用量、交联剂用量对产品性能的影响。得到了最佳聚合反应条件:单体质量比为5:1,反应温度70℃,中和度70%,引发剂用量为单体总量的0.1%,交联剂用量为单体总量的0.01%。在优化条件下制得的产品纯水吸收倍率2653.0g/g,生理盐水吸收倍率137.2g/g,保水性能佳。同时,得出主要实验因素对产品性能的影响,并对产品应答性能进行测试。  相似文献   

12.
实验以过硫酸钾-亚硫酸钠氧化还原体系为引发剂、N,N′-亚甲基双丙烯酰胺为交联剂,制备丝胶-丙烯酸-丙烯酰胺接枝共聚型吸水树脂。产物经红外光谱表征。研究了不同反应条件下得到的聚合物吸蒸馏水和生理盐水的能力,探讨了影响产品吸水性能的因素。结果表明:当引发剂用量与单体总质量比为1.25%,交联剂用量与单体总质量比为0.01%,中和度为75%,丙烯酰胺与丙烯酸质量比为0.7:1,聚合温度55℃,聚合时间6 h时,所得产物吸液能力较佳,随丝胶用量的增加,产物吸液能力缓慢上升。当丝胶用量为4%时,产物吸蒸馏水能力为1 847倍,吸盐水能力为112倍。  相似文献   

13.
以丙烯酰胺(AM)、丙烯酸(AA)为原料,以蒙脱土(MMT)为无机添加剂,采用水溶液聚合法合成了耐盐性AM/AA/MMT复合吸水材料,优化改进了其合成条件。结果表明,优化的合成条件是:单体AM和从的质量配比为6/1,MMT用量为7.5wt%,交联剂浓度为0.08wt%,水溶液pH值为6,引发剂浓度为0.07wt%。吸水材料在10%NaCl溶液中吸液率达64倍,在15%NaCl溶液中吸液率达45倍,在20%NaCl溶液中吸液率33倍。  相似文献   

14.
抗盐性淀粉接枝高吸水性树脂合成条件优化   总被引:14,自引:1,他引:13  
周明  蒲万芬  杨燕 《石油化工》2003,32(4):314-316
以硝酸铈铵为引发剂,N,N-亚甲基-二丙烯酰胺作为交联剂,将玉米淀粉与丙烯酰胺、丙烯酸在水溶液中接枝共聚,合成了高吸水性树脂。结果表明,适宜的接枝共聚条件为:反应温度70℃,反应时间1 5h,丙烯酰胺与丙烯酸的质量比为15/1,淀粉占单体质量的20%,丙烯酸中和度为75%,交联剂和引发剂(占单体和淀粉)的质量分数各为0 05%、0 8%。在5%NaCl水溶液中吸盐率达58倍,在15%NaCl水溶液中吸盐率达38倍。  相似文献   

15.
以阴离子单体丙烯酸、阳离子单体季铵盐、非离子单体丙烯酰胺等为主要原料,加入无机共混物、双甲基丙烯酰胺交联剂、过硫酸盐水溶性引发剂,合成了超强吸水颗粒型凝胶调驱剂,确定了最佳配方及合成条件,中和度90%~125%,总单体质量分数30%~50%,以总单体质量为基准,引发剂质量分数0.10%~0.20%、交联剂质量分数0.08%~0.12%、丙烯酰胺质量分数40%~70%、丙烯酸质量分数10%~30%、季铵盐质量分数10%~30%、无机共混物质量分数10%~50%,反应温度50~70℃。对该颗粒型凝胶调驱剂进行了性能评价,结果表明,该产品具有高膨胀性以及较好的延迟膨胀、耐温抗盐、耐冲刷及油水选择等能力。  相似文献   

16.
采用水溶液聚合,以JL为交联剂,部分中和的丙烯酸、丙烯酰胺为单体,制成交联型耐盐高吸水性聚合物。正交实验确定了合成的最佳条件,并评价了合成产品的性能。研究结果表明,反应时间30min,丙烯酸中和度70%,丙烯酰胺用量5g,交联剂质量分数0.02%时,得到的聚合物的吸水率可达到150g/g。  相似文献   

17.
采用一种木质纤维素与丙烯酸(AA)/丙烯酰胺(AM)接枝共聚,以N,N'-亚甲基双丙烯酰胺(NMBA)为交联剂,以过硫酸铵(APS)为引发剂,制备出耐温、耐盐、缓膨性能好、高强度的树脂凝胶。考察了交联剂用量、引发剂用量,木质纤维素用量及单体配比对共聚物性能的影响,合适的接枝共聚反应条件为:木质纤维素用量3.0%,AA与AM质量比0.75:1.25(单体质量占体系总质量的30%),引发剂和交联剂用量分别为0.25%和0.15%。  相似文献   

18.
丙烯酸-丙烯酰胺共聚物高吸水性树脂耐候性的研究   总被引:3,自引:0,他引:3  
以丙烯酸和丙烯酰胺为原料,N,N′-亚甲基双丙烯酰胺为交联剂,过硫酸钾和亚硫酸氢钠为引发剂,在水溶液中共聚制备了高吸水性树脂,用紫外灯照射法研究了高吸水性树脂的耐候性。结果表明:高吸水性树脂的耐候性随交联剂和丙烯酰胺的用量增加与丙烯酸中和度的增大而增大,引发剂和单体浓度对树脂的耐候性无影响;N,N′-亚甲基双丙烯酰胺在紫外线作用下水解是导致高吸水性树脂耐候性差的主要原因。  相似文献   

19.
聚羧酸盐类无磷洗涤助剂的合成与性能研究   总被引:1,自引:1,他引:0  
以丙烯酸和马来酸酐为单体,以过硫酸钾和亚硫酸氢钠为引发剂,采用水溶液聚合法合成了聚羧酸盐类无磷 洗涤助剂聚丙烯酸钠、马来酸酐与丙烯酸(MA-co-AA)共聚物。考察了链转移剂对聚丙烯酸(PAA)相对分子质量 的影响;研究了单体配比、引发剂用量、聚合反应温度对MA-co-AA助洗性能的影响。  相似文献   

20.
以N,N-亚甲基双丙烯酰胺为交联剂,过硫酸钾为引发剂,用溶液聚合法制备SiO<,2>/丙烯酸/丙烯酰胺吸水树脂.考察了单体质量比、交联剂用量、二氧化硅溶胶用量及尿素用量对SiO<,2>/丙烯酸/丙烯酰胺吸水树脂吸水率的影响,对比了制得的3种吸水树脂在常温常压下的保水性,并采用热重分析法对吸水树脂进行了分析,3种吸水树脂...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号