首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决仿生复眼系统不能自适应变焦的问题,提出了一种基于介电润湿液体透镜曲面阵列的可变焦仿生复眼系统。分析系统结构对成像性能的影响,计算系统的自适应变焦能力及相应像平面可移动范围。结果表明:系统成像的视场角随着基底曲率的增大而增大。相比于非均匀透镜阵列,均匀透镜阵列可明显降低系统的离焦像差。适当减小子透镜单元尺寸,也可以达到降低边缘透镜离焦像差的目的。当物距或者接收器位置发生改变时,通过调整子透镜单元焦距降低系统的离焦像差。系统接收器可移动范围为1.9 mm~15 mm。  相似文献   

2.
Previous optical modeling of the human eye with large pupils has predicted a larger impact of defocus on the human contrast sensitivity function and modulation transfer function than is observed experimentally. Theory predicts that aberrations and the Stiles-Crawford effect (SCE) should both lead to increased depth of focus, resulting in higher contrast sensitivities and veridical (not phase-reversed) perception over a larger range of spatial frequencies in defocused retinal images. Using a wave optics model, we examine these predictions quantitatively and compare them with psychophysical experiments that measure the effect of defocus on contrast sensitivity and perceived phase reversals. We find that SCE apodization has its biggest effect on defocused image quality when defocus and spherical aberration have the same sign. A model including typical amounts of spherical aberration and pupil apodization provides a dramatically improved prediction of the effects of defocus on contrast sensitivity with large pupils. The SCE can significantly improve defocused image quality and defocused vision, particularly for tasks that require veridical phase perception.  相似文献   

3.
An ideal correcting method, such as a customized contact lens, laser refractive surgery, or adaptive optics, that corrects higher-order aberrations as well as defocus and astigmatism could improve vision. The benefit achieved with this ideal method will be limited by decentration. To estimate the significance of this potential limitation we studied the effect on image quality expected when an ideal correcting method translates or rotates with respect to the eye's pupil. Actual wave aberrations were obtained from ten human eyes for a 7.3-mm pupil with a Shack-Hartmann sensor. We computed the residual aberrations that appear as a result of translation or rotation of an otherwise ideal correction. The model is valid for adaptive optics, contact lenses, and phase plates, but it constitutes only a first approximation to the laser refractive surgery case where tissue removal occurs. Calculations suggest that the typical decentrations will reduce only slightly the optical benefits expected from an ideal correcting method. For typical decentrations the ideal correcting method offers a benefit in modulation 2-4 times higher (1.5-2 times in white light) than with a standard correction of defocus and astigmatism. We obtained analytical expressions that show the impact of translation and rotation on individual Zernike terms. These calculations also reveal which aberrations are most beneficial to correct. We provided practical rules to implement a selective correction depending on the amount of decentration. An experimental study was performed with an aberrated artificial eye corrected with an adaptive optics system, validating the theoretical predictions. The results in a keratoconic subject, also corrected with adaptive optics, showed that important benefits are obtained despite decentrations in highly aberrated eyes.  相似文献   

4.
High-resolution retinal imaging with micro adaptive optics system   总被引:3,自引:0,他引:3  
Niu S  Shen J  Liang C  Zhang Y  Li B 《Applied optics》2011,50(22):4365-4375
Based on the dynamic characteristics of human eye aberration, a microadaptive optics retina imaging system set is established for real-time wavefront measurement and correction. This paper analyzes the working principles of a 127-unit Hartmann-Shack wavefront sensor and a 37-channel micromachine membrane deformable mirror adopted in the system. The proposed system achieves wavefront reconstruction through the adaptive centroid detection method and the mode reconstruction algorithm of Zernike polynomials, so that human eye aberration can be measured accurately. Meanwhile, according to the adaptive optics aberration correction control model, a closed-loop iterative aberration correction algorithm based on Smith control is presented to realize efficient and real-time correction of human eye aberration with different characteristics, and characteristics of the time domain of the system are also optimized. According to the experiment results tested on a USAF 1951 standard resolution target and a living human retina (subject ZHY), the resolution of the system can reach 3.6?LP/mm, and the human eye wavefront aberration of 0.728λ (λ=785?nm) can be corrected to 0.081λ in root mean square (RMS) so as to achieve the diffraction limit (Strehl ratio is 0.866), then high-resolution retina images are obtained.  相似文献   

5.
It is now known that defocus is not the only aberration in the eye that exhibits dynamic behavior during fixation. It is currently unknown what effects, if any, the dynamics of these other aberrations have on steady-state accommodation control. We constructed an adaptive optics system to serve as a tool for future investigations in this area. The system has several design features of interest, including automated precompensation of defocus and astigmatism and a method to bypass a scanner used to reduce speckle. It also has the facility to measure the eye's aberrations independent of the aberration manipulation device-a 37-actuator membrane deformable mirror. Coherence function analysis was used to assess the deformable mirror performance in terms of coupling between Zernike modes. Modes beyond third radial order showed severe coupling. Pilot data were collected on one subject to demonstrate the utility of this system in steady-state accommodation studies. The value of the system for future work in this area is discussed.  相似文献   

6.
We derive equations for defocus and primary spherical wave aberration coefficients caused by a shift in image plane of a perfect optical system. The spherical aberration equation is accurate at describing changes in the spherical aberration of an aberrated schematic eye.  相似文献   

7.
We report the main parameters of a nine-electrode bimorph piezoelectric adaptive mirror designed to correct low-order aberrations. We describe measurements of the control coefficients for defocus, astigmatism, pure coma, and spherical aberration of this mirror and the temperature stability of its profile. The performance of a simple adaptive optical system for imaging through laboratory-generated turbulence is investigated. This low-order device is suitable for small (<1-m-diameter) telescopes and for nonastronomical applications of adaptive optics.  相似文献   

8.
Shirai T 《Applied optics》2002,41(19):4013-4023
A novel, to our knowledge, adaptive optical imaging system for high-resolution retinal imaging is described. The system is based on a feedback interferometer, in which two-dimensional output fringe intensity from a Mach-Zehnder interferometer with large radial shear is fed back, with the help of a video projector connected with a CCD camera, to an optically addressed phase-only liquid-crystal spatial light modulator. Experiments to verify the system performance have been conducted by use of an artificial eye consisting of a lens, an aberration plate, and a resolution test target. We observed that an image of the test target (mimicking a retina) blurred by the aberration plate (mimicking ocular aberrations) was successfully restored immediately after our adaptive optics system was activated.  相似文献   

9.
Advances in digitalized image optics has increased the importance of chromatic aberration. The axial and lateral chromatic aberrations of an optical lens depends on the choice of optical glass. Based on statistics from glass companies worldwide, more than 300 optical glasses have been developed for commercial purposes. However, the complexity of optical systems makes it extremely difficult to obtain the right solution to eliminate small chromatic aberration. Even the damped least-squares technique, which is a ray-tracing-based method, is limited owing to its inability to identify an enhanced optical system configuration. Alternatively, this study instead attempts to eliminate even negligible axial and lateral colour aberration by using algorithms involving the theories of geometric optics in triplet lens, binary and real encoding, multiple dynamic crossover and random gene mutation techniques.  相似文献   

10.
空间相干光通信中接收天线像差会使光外差效率下降.对本振光为高斯分布,信号光为爱里斑分布的光外差效率进行了研究,给出了无像差时外差效率的解析表达式.当焦平面上爱里斑半径与本振高斯光束光腰半径之比为1.71时,有最大外差效率81.45%.然后以本振光为理想的高斯光束,信号光受像差的影响,研究了倾斜、离焦、球差、彗差、像散等像差引起的光外差效率损失,给出了存在像差时外差效率的一维积分表达式.研究表明即使在采用离焦校正后,一个波长的球差引起的附加外差效率损失仍可达0.9 dB.因此对于爱里斑位于光轴上的接收天线,在设计时需仔细处理球差的影响.  相似文献   

11.
We outline an approach for the calculation of the mean focal length of an aberrated lens and provide closed-form solutions that show that the focal length of the lens is dependent on the presence of defocus, x-astigmatism, and spherical aberration. The results are applicable to Gaussian beams in the presence of arbitrary-sized apertures. The theoretical results are confirmed experimentally, showing excellent agreement. As the final results are in algebraic form, the theory may readily be applied in the laboratory if the aberration coefficients of the lens are known.  相似文献   

12.
We studied the age dependence of the relative contributions of the aberrations of the cornea and the internal ocular surfaces to the total aberrations of the eye. We measured the wave-front aberration of the eye with a Hartmann-Shack sensor and the aberrations of the anterior corneal surface from the elevation data provided by a corneal topography system. The aberrations of the internal surfaces were obtained by direct subtraction of the ocular and corneal wave-front data. Measurements were obtained for normal healthy subjects with ages ranging from 20 to 70 years. The magnitude of the RMS wave-front aberration (excluding defocus and astigmatism) of the eye increases more than threefold within the age range considered. However, the aberrations of the anterior corneal surface increase only slightly with age. In most of the younger subjects, total ocular aberrations are lower than corneal aberrations, while in the older subjects the reverse condition occurs. Astigmatism, coma, and spherical aberration of the cornea are larger than in the complete eye in younger subjects, whereas the contrary is true for the older subjects. The internal ocular surfaces compensate, at least in part, for the aberrations associated with the cornea in most younger subjects, but this compensation is not present in the older subjects. These results suggest that the degradation of the ocular optics with age can be explained largely by the loss of the balance between the aberrations of the corneal and the internal surfaces.  相似文献   

13.
Wave-front aberrations in the anterior corneal surface and the whole eye   总被引:9,自引:0,他引:9  
In order to investigate the sources of wave-front aberrations in the human eye, we have measured the aberrations of the anterior cornea and the whole eye using a topographic system and a psychophysical wave-front sensor. We have also calculated the aberrations for the internal optics of both eyes of 45 young subjects (aged 9 to 29 years). The mean rms for the anterior cornea was similar to that for the internal optics and thewhole eye when astigmatism was included, but less than that for both the internal optics and the whole eye with astigmatism removed. For eyes with low whole-eye rms values, mean rms for the anterior cornea was greater than that for the whole eye, suggesting that the anterior corneal aberration is partially compensated by the internal optics of the eye to produce the low whole-eye rms. For eyes with larger whole-eye rms values, the rms values for both the anterior cornea and the internal optics were less than that for the whole eye. Thus the aberrations for the two elements tend to be primarily additive. This pattern exists whether or not astigmatism was included in the wave-front aberration rms. For individual Zernike terms, astigmatism and spherical aberration in the anterior cornea were partially compensated by internal optics, while some other Zernike terms showed addition between the anterior cornea and internal optics. Individual eyes show different combinations of compensation and addition across different Zernike terms. Our data suggest that the reported loss of internal compensation for anterior corneal aberrations in elderly eyes with large whole-eye aberrations [J. Opt. Soc. Am. A 19, 137 (2002)] may also occur in young eyes.  相似文献   

14.
This paper describes the behavior of a cat's eye retroreflector, which is incorporated in a novel way in a double-pass homodyne polarization interferometer. The amount of mirror tilt immunity a cat's eye provides is calculated within the paraxial approximation using 4×4 ABCD matrices. It is found that there is a position of the target mirror in which the tilt immunity is at a maximum. A real cat's eye, which is affected by aberrations, is optimized and examined using Zemax software for optical design. The maximum amount of mirror tilt immunity is numerically calculated and written in terms of defocus and spherical aberration. Finally, for the purposes of comparison, the amplitude of the Lissajous pattern as the target mirror tilts is calculated for both an interferometer with an integrated cat's eye and an interferometer with a cube corner.  相似文献   

15.
The purposes of the study were to compare the performance of ten representative focus measures in the presence of nondefocus aberrations and to evaluate their applicability to the eye. For fixed amounts of nondefocus aberrations, the amount of defocus was changed to generate a series of blurred images from which focus measure curves were derived. In the presence of small amounts of nondefocus aberrations, all focus measures showed unimodal and monotonic behavior, although there were large differences in their sensitivity to defocus and effective ranges. There were breakdowns in monotonicity and unimodality for some focus measures when applied to data from human eyes, while other focus measures could detect the shift in the best-focus plane in the blurred image series resulting from spherical aberration.  相似文献   

16.
Asymptotic expressions are derived for the two-dimensional incoherent optical transfer function (OTF) of an optical system with defocus and spherical aberration. The two-dimensional stationary phase method is used to evaluate the aberrated OTF at large and moderately large defocus and spherical aberration. For small aberrations, the OTF is approximated by a power series in the aberration coefficients. An accurate approximation (in elementary functions) to the OTF is obtained for a defocused optical system with a circular pupil. We experimentally demonstrate the validity of the OTF approximations in sharp-focus image restoration from two defocused images. A digital focusing method is presented.  相似文献   

17.
Scholl MS  Lawrence GN 《Applied optics》1995,34(31):7295-7301
We investigate the feasibility of using an adaptive mirror for in-orbit aberration corrections. The advantage of an in situ aberration correction of optical components in the space environment is that the mirror shape can be adjusted in an iterative fashion until the best image is obtained. Using the actuator spacing, corresponding to one half of the Nyquist frequency, the Strehl ratio of the corrected wave front improves to 0.95 when the mirror is fabricated with 6.5 waves of spherical aberration. The Strehl ratio decreases to 0.86 when the number of actuators is reduced by a factor of 4, in a two-dimensional adaptive optics model.  相似文献   

18.
In accordance with the present international standard for intraocular lenses (IOLs), their imaging performance should be measured in a model eye having an aberration-free cornea. This was an acceptable setup when IOLs had all surfaces spherical and hence the measured result reflected the spherical aberration of the IOL. With newer IOLs designed to compensate for the spherical aberration of the cornea there is a need for a model eye with a physiological level of spherical aberration in the cornea. A literature review of recent studies indicated a fairly high amount of spherical aberration in human corneas. Two model eyes are proposed. One is a modification of the present ISO standard, replacing the current achromat doublet with an aspheric singlet cut in poly(methyl methacrylate) (PMMA). The other also has an aspheric singlet cut in PMMA, but the dimensions of it and the entire model eye are close to the physiological dimensions of the eye. They give equivalent results when the object is at infinity, but for finite object distances only the latter is correct. The two models are analyzed by calculation assuming IOLs with different degrees of asphericity to elucidate their sensitivity to variation and propose tolerances. Measured results in a variant of the modified ISO model eye are presented.  相似文献   

19.
We studied the mechanism of compensation of aberrations within the young human eye by using experimental data and advanced ray-tracing modeling. Corneal and ocular aberrations along with the alignment properties (angle kappa, lens tilt, and decentration) were measured in eyes with different refractive errors. Predictions from individualized ray-tracing optical models were compared with the actual measurements. Ocular spherical aberration was, in general, smaller than corneal spherical aberration without relation to refractive error. However, horizontal coma compensation was found to be significantly larger for hyperopic eyes where angle kappa tended to also be larger. We propose a simple analytical model of the relationship between the corneal coma compensation effect with the field angle and corneal and crystalline shape factors. The actual shape factors corresponded approximately to the optimum shapes that automatically provide this coma compensation. We showed that the eye behaves as an aplanatic optical system, an optimized design solution rendering stable retinal image quality for different ocular geometries.  相似文献   

20.
Optical aberrations of intraocular lenses measured in vivo and in vitro   总被引:5,自引:0,他引:5  
Corneal and ocular aberrations were measured in a group of eyes before and after cataract surgery with spherical intraocular lens (IOL) implantation by use of well-tested techniques developed in our laboratory. By subtraction of corneal from total aberration maps, we also estimated the optical quality of the intraocular lens in vivo. We found that aberrations in pseudophakic eyes are not significantly different from aberrations in eyes before cataract surgery or from previously reported aberrations in healthy eyes of the same age. However, aberrations in pseudophakic eyes are significantly higher than in young eyes. We found a slight increase of corneal aberrations after surgery. The aberrations of the IOL and the lack of balance of the corneal spherical aberrations by the spherical aberrations of the intraocular lens also degraded the optical quality in pseudophakic eyes. We also measured the aberrations of the IOL in vitro, using an eye cell model, and simulated the aberrations of the IOL on the basis of the IOL's physical parameters. We found a good agreement among in vivo, in vitro, and simulated measures of spherical aberration: Unlike the spherical aberration of the young crystalline lens, which tends to be negative, the spherical aberration of the IOL is positive and increases with lens power. Computer simulations and in vitro measurements show that tilts and decentrations might be contributors to the increased third-order aberrations in vivo in comparison with in vitro measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号