共查询到20条相似文献,搜索用时 46 毫秒
1.
为了改进基本粒子群算法的搜索功能,针对粒子群算法易于陷入局部极值,进化后期的收敛速度慢和精度低等缺点,通过公式分析得到新的惯性权重调节方法,提出了一种新的改进粒子群算法。用几个经典测试函数进行实验,实验结果表明,新算法不仅具有更好的收敛精度,而且能更有效地进行全局搜索。 相似文献
2.
3.
粒子群优化算法(PSO)是一种生物进化技术。依据粒子间的相互影响发现搜索空间中的最优解。通过分析基本PSO算法的进化方程,研究了一种具有更好收敛速度和全局收敛性的改进PSO算法。5个典型测试函数的仿真实验表明该改进算法是行之有效的。 相似文献
4.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
5.
粒子群优化算法(particle swarm optimization,PSO)是一种新兴的优化技术,其思想来源于人工生命和演化计算理论。PSO算法具有简单、易实现、可调参数少等特点,在很多领域得到了广泛应用。但PSO算法存在早熟收敛问题。为了克服粒子群优化算法的早熟收敛问题,提出了一种旨在保持种群多样性的改进PSO(IPSO)算法,以提高PSO算法摆脱局部极小点的能力。通过对3种Benchmark函数的测试,结果表明IPSO算法不仅具有较快的收敛速度、有效的全局收敛性能,而且还具有良好的稳定性。 相似文献
6.
7.
改进的粒子群优化算法 总被引:1,自引:0,他引:1
将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心,并且按一定概率选择其他粒子的个体极值点,设计了一种新的粒子群优化算法.新算法的学习行为符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解.实验结果表明了算法的有效性. 相似文献
8.
一种更简化而高效的粒子群优化算法 总被引:66,自引:0,他引:66
针对基本粒子群优化(basic particle swarm optimization,简称bPSO)算法容易陷入局部极值、进化后期的收敛速度慢和精度低等缺点,采用简化粒子群优化方程和添加极值扰动算子两种策略加以改进,提出了简化粒子群优化(simple particle swarm optimization,简称sPSO)算法、带极值扰动粒子群优化(extremum disturbed particle swarm optimization,简称tPSO)算法和基于二者的带极值扰动的简化粒子群优化(ext 相似文献
9.
提出了一种基于粒子进化的多粒子群优化算法。该算法采用局部版的粒子群优化方法,多个粒子群彼此独立地搜索解空间,从而增强了全局搜索能力;利用重置进化粒子位置的方法使陷入局部值的粒子摆脱局部最小,从而有效地避免了"早熟"问题,提高了算法的稳定性。对3个测试函数进行了对比实验,结果表明该算法优于标准粒子群算法。 相似文献
10.
粒子群算法研究与展望 总被引:3,自引:0,他引:3
介绍了基本粒子群算法,归纳了粒子群算法的研究现状和改进,包括:增加惯性因子的改进;基于收敛性分析的改进;导入其他演化算法思想的改进;建立非数值问题模型的改进.简要分析了PSO算法的应用.最后对PSO的研究现状做出总结和展望,提出未来的几个研究热点. 相似文献
11.
12.
13.
14.
15.
微粒群优化算法是一种新兴的基于群体智能的随机优化算法。该算法概念简单、易于实现,已得到了广泛的研究和应用。文中介绍了PSO的基本原理、算法流程及各种改进算法,然后归纳了PSO算法的应用概况,并就PSO算法进一步的研究工作进行了探讨和展望。 相似文献
16.
针对粒子群优化算法容易陷入局部极值点、进化后期收敛慢和优化精度较差等缺点,设计了一种随机交叉算子,提出了随机交叉粒子群优化算法。该算法在每次迭代中,对当前粒子和整个粒子群的最优粒子进行随机交叉,产生新的较优粒子并代替原来的粒子,从而加快了算法的收敛速度,增强了算法的寻优能力。仿真结果表明,该算法具有较高的优化性能。 相似文献
17.
新的进化计算算法——粒子群优化算法 总被引:5,自引:0,他引:5
Particle Swarm Optimization (PSO),rooting from simulation of swarm of bird, is a new branch of Evolution Algorithms based on Swarm Intelligence.Concept of PSO,which can be described with only several lines of codes,is more easily understood and realized than some other optimization algorithms.PSO has been successfully applied to much engineering.Firstly,this paper depicts natural explanation about PSO,secondly,introduces its basic theory and several development versions of PSO,and presents some applications of PSO.At last,a brief conclusion and further research direction are given. 相似文献
18.
具有随机惯性权重的PSO算法 总被引:11,自引:1,他引:11
微粒群算法(PSO算法)是模拟鸟类、鱼群等的群体智能行为的一种优化算法,当前,在相关领域内,倍受国内外学者关注。该文在分析基本PSO算法的速度进化方程的基础上,提出一种能更好描述微粒进化过程的速度方程,由其引出一种具有随机惯性权重的PSO算法;通过五个典型测试函数的仿真实验,验证了其可行性,同时也表明具有随机惯性权重的PSO算法较具有线性递减惯性权重的PSO算法在收敛速度和全局收敛性方面有明显提高。 相似文献
19.
基于雁群启示的粒子群优化算法 总被引:7,自引:0,他引:7
粒子群优化(PS0)算法是一类新兴的随机优化技术,其思想来源于人工生命和演化计算理论。PSO通过粒子追随个体极值和全局极值来完成优化。本文借鉴生物界中雁群的飞行特征,给出了一种改进的PSO算法。该算法一方面将粒子排序,每个粒子跟随其前面那个较优粒子飞行,保持了多样性;另一方面使每个粒子利用更多其他粒子的有用信息,加强粒子之间的合作与竞争。用3个基准函数对新算法进行实验,结果表明,新算法不仅具有更好的收敛精度和更快的收敛速度,而且能更有效地进行全局搜索。 相似文献
20.
粒子群算法(PSO)是一种典型的基于群体智能的优化算法,但其在速度较小时,容易陷入局部最优解;本文提出一种带逆反的粒子群算法(PSORTP),并对其全局收敛性进行了理论分析,证明该算法能够以概率1收敛于全局最优解,最后以典型的函数优化问题的仿真实验及与经典方法的PSO的对比,验证了PSORTP的有效性。 相似文献