共查询到19条相似文献,搜索用时 46 毫秒
1.
现有的非负矩阵分解(NMF)算法往往基于欧氏距离来设计目标函数,对噪声比较敏感。为了增强算法的鲁棒性,提出一种基于干净数据的流形正则化非负矩阵分解(MRNMF/CD)算法。在MRNMF/CD算法中,把低秩约束、流形正则化和NMF技术无缝地融为一体,使算法性能较为优异。首先,通过添加低秩约束,MRNMF/CD可以从噪声数据中恢复干净数据,并获得数据的全局结构;其次,为了利用数据的局部几何结构信息,MRNMF/CD把流形正则化融入目标函数中。此外,还提出了一种求解MRNMF/CD的迭代算法,并从理论上分析了该求解算法的收敛性。在ORL、Yale和COIL20数据集上的实验结果表明,MRNMF/CD算法比现有的k-means、主成分分析(PCA)、NMF和图正则化非负矩阵分解(GNMF)算法具有更好的识别准确性。 相似文献
2.
3.
长链非编码RNA (lncRNA)在疾病的发生中起着重要作用,然而通过生物学实验探索lncRNA与疾病的关系昂贵且费时,必须开发出更准确和有效的计算方法来预测lncRNA与疾病的关系.本文提出了一种新的基于流形正则化非负矩阵分解的计算方法(MRNMFLDA)来预测lncRNA与疾病的关系.该方法首先采用相似性网络融合方法分别整合lncRNA与疾病的相似性,然后通过构建标签加权矩阵、引入流形正则化约束的非负矩阵分解算法来预测lncRNA与疾病潜在的关系.实验结果表明,本方法在留一交叉验证和5折交叉验证中AUC值分别达到0.8927和0.8635±0.0054,优于其他4种方法.案例研究表明,本方法能够有效地预测与3种疾病(肺癌,宫颈癌,和骨肉瘤)有关系的lncRNA. 相似文献
4.
提出了一种基于图正则化的半监督非负矩阵分解算法(GSNMF),克服了非负矩阵分解(NMF)、约束非负矩阵分解(CNMF)和图正则化非负矩阵分解(GNMF)方法忽略样本数据的局部几何结构或标签信息不足的缺陷,且NMF、CNMF和GNMF均为GSNMF的特例。也从理论上证明了GSNMF算法的收敛性。该算法对样本数据进行低维非负分解时,在图框架下既保持数据的几何结构,又利用已知样本的标签信息,在进行半监督学习时,同类样本能更好地聚集而类间距离尽可能大。在人脸数据库ORL、FERET和手写体数据库USPS上的仿真结果表明,相对于NMF及其一些改进算法,GSNMF均具有更高的聚类精度。 相似文献
5.
针对非负矩阵分解方法对原始数据的单图约束导致的结果未知性大、满足需求单一,以及大多非负矩阵分解方法存在对噪声、离群点较敏感导致的稀疏度和鲁棒性较差等问题,提出基于L21范式的多图正则化非负矩阵分解方法.采用L21范式,提升分解结果的稀疏度和鲁棒性.构建多图约束的算法模型更好地保持数据的流形结构.构建目标函数并给出乘性迭... 相似文献
6.
目的 随着Web2.0技术的进步,以用户生成内容为中心的社交网站蓬勃发展,也使得基于图像标签的图像检索技术越来越重要。但是,由于用户标注时的随意性和个性化,导致用户提交的图像标签不够完备,降低了图像检索的准确性。方法 针对这一问题,提出一种正则化的非负矩阵分解方法来丰富图像欠完备的标签,提高图像标签的完备性。利用非负矩阵分解的方法将原始的标签-图像矩阵投影到潜在的低秩空间里消除噪声,同时利用图像的类内视觉离散度作为正则化项提高消除噪声、丰富标签的效果。结果 利用从社交网站Flickr上下载的大量社交图像进行对比实验,验证了本文方法对丰富图像标签的有效性。通过对比目前流行的优化算法,本文算法获得较高的性能提升,算法平均准确度提高了12.3%。结论 将图像类内视觉离散度作为正则化项的非负矩阵分解算法,能较好地丰富社交图像的标签,解决网络图像标签的欠完备问题。 相似文献
7.
现存非负矩阵分解(non-negative matrix factorization,NMF)研究多考虑单一视图分解数据,忽略了数据信息的全面性。此外,NMF限制其获取数据的内在几何结构。针对以上问题,提出一个结构正则化多视图非负矩阵分解算法(structure regularized multi-view nonnegative matrix factorization,SRMNMF)。首先,通过主成分分析来对数据进行全局结构的判别式学习;其次,利用流形学习来捕获数据的局部结构;然后,通过利用多视图数据的多样性和差异性来学习表征。模型提升了算法聚类的整体性能,更加有效地挖掘数据的结构信息。此外,采用高效的交替迭代算法优化目标函数得到最优的因子矩阵。在六个数据集上与现存的代表性方法比较,所提出的SRMNMF的准确率、NMI和Purity分别最大提高4.4%、6.1%和4.05%。 相似文献
8.
9.
挖掘数据网络中有价值的、具有稳定性的社区,对网络信息的获取、推荐及网络的演化预测具有重要的价值。针对现有异质网络聚类方法难以在同一维度有效整合网络中异质信息的问题,提出了一种基于图正则化非负矩阵分解的异质网络聚类方法。通过加入图正则项,将中心类型子空间和属性类型子空间的内部连接关系作为约束项,引入到非负矩阵分解模型中,从而找到高维数据在低维空间的紧致嵌入,成功消除了异质节点之间的部分噪声,同时,对反映不同子网络共有潜在结构的共识矩阵进行优化,有效整合异质信息,并且在降维过程中较大限度地保留了异质信息的完整性,提高了异质网络聚类方法的精度,在真实世界数据集上的实验结果也验证了该方法的有效性。 相似文献
10.
11.
12.
Link prediction has attracted wide attention among interdisciplinary researchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in future networks. Despite the presence of missing links in the target network of link prediction studies, the network it processes remains macroscopically as a large connected graph. However, the complexity of the real world makes the complex networks abstracted from real systems often contain many isolated nodes. This phenomenon leads to existing link prediction methods not to efficiently implement the prediction of missing edges on isolated nodes. Therefore, the cold-start link prediction is favored as one of the most valuable subproblems of traditional link prediction. However, due to the loss of many links in the observation network, the topological information available for completing the link prediction task is extremely scarce. This presents a severe challenge for the study of cold-start link prediction. Therefore, how to mine and fuse more available non-topological information from observed network becomes the key point to solve the problem of cold-start link prediction. In this paper, we propose a framework for solving the cold-start link prediction problem, a joint-weighted symmetric nonnegative matrix factorization model fusing graph regularization information, based on low-rank approximation algorithms in the field of machine learning. First, the nonlinear features in high-dimensional space of node attributes are captured by the designed graph regularization term. Second, using a weighted matrix, we associate the attribute similarity and first order structure information of nodes and constrain each other. Finally, a unified framework for implementing cold-start link prediction is constructed by using a symmetric nonnegative matrix factorization model to integrate the multiple information extracted together. Extensive experimental validation on five real networks with attributes shows that the proposed model has very good predictive performance when predicting missing edges of isolated nodes. 相似文献
13.
传统的非平滑约束的非负矩阵分解算法(nsNMF)在处理高光谱数据时,存在对初始值敏感、容易陷入局部最优值等缺陷。为此,提出一种基于粒子群优化(PSO)的nsNMF算法。采用传统nsNMF算法迭代的结果作为初始值,以避免PSO的盲目搜索。通过PSO搜索端元光谱矩阵,利用nsNMF算法更新端元光谱矩阵和丰度矩阵,以缩小搜索空间,降低计算复杂度,避免陷入局部最优。在合成数据集和真实数据集上的实验结果表明,与传统nsNMF算法相比,该算法能获得更好的全局最优解,端元光谱和丰度值更接近真实值。 相似文献
14.
15.
16.
17.
传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后将相似图作为约束项求得非负矩阵的最优分解。相似图的约束使得非负矩阵分解在降维过程中保持了原始数据之间的相似性关系,进而提高了非负矩阵分解的判别能力。图像聚类实验结果表明了该方法的有效性。 相似文献
18.
Spatial-Spectral Preprocessing based on Nonnegative Matrix Factorization to Unmix Hyperspectral Data
Non-negative Matrix Factorization (NMF)method of blind spectral unmixing can obtain the spectrum and abundance of the endmember by synchronous optimization,without supervising the selection of endmember.Therefore,NMF has been developed rapidly in the application of hyperspectral unmixing.However,traditional blind spectral unmixing NMF method tends to fall into the local optimum and it is difficult to obtain a stable optimal solution.In this paper,we propose an improved Non-negative Matrix Factorization (NMF)method based on Spatial\|Spectal Preprocessing for spectral unmixing of hyperspectral data (SSPP-NMF).First,the SSPP algorithm is used to combine spatial and spectral information to select reasonable and effective dataset.Then,the NMF algorithm is used to unmix this dataset to obtain the final optimized endmember spectrum.Finally,the Non\|Negative Least Squares (NNLS)method is used to obtain the final abundance of the whole study area.The validity and applicability of the proposed method were analyzed based on a set of synthetic hyperspectral data and real hyperspectral images;and then the results were compared with that from three algorithms including the existing NMF algorithm,MVC\|NMF algorithm and ATGP-NMF algorithm.Results show that compared with ATGP-NMF and MVC-NMF,the SSPP algorithm can effectively suppress the influence of noise,significantly improve the performance of the NMF method of blind spectral unmixing algorithm. 相似文献
19.
异构信息网络中包含多类实体和关系.随着数据规模增大时,不同类实体规模增长不平衡,异构关系数据也变得异常稀疏,导致聚类算法的时间复杂度高、准确率低.针对上述问题,提出了一种基于关联矩阵分解的2阶段联合聚类算法FNMTF-CM.第1阶段,抽取规模较小的一类实体中的关联关系构建关联矩阵,通过对称非负矩阵分解得到划分指示矩阵.与原始关系矩阵相比,关联矩阵的稠密度更高,规模更小.第2阶段,将划分指示矩阵作为关系矩阵三分解的输入,进而快速求解另一类实体的划分指示矩阵.在标准测试数据集和异构关系数据集上的实验表明,算法准确率和性能整体优于传统的基于非负矩阵分解的联合聚类算法. 相似文献