首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a general analytical model for free vibration of thin-walled composite beams with arbitrary laminate stacking sequences and studies the effects of shear deformation over the natural frequencies. This model is based on the first-order shear-deformable beam theory and accounts for all the structural coupling coming from the material anisotropy. The seven governing differential equations for coupled flexural–torsional–shearing vibration are derived from the Hamilton’s principle. The resulting coupling is referred to as sixfold coupled vibration. Numerical results are obtained to investigate the effects of fiber angle, span-to-height ratio, modulus ratio, and boundary conditions on the natural frequencies as well as corresponding mode shapes of thin-walled composite box beams.  相似文献   

2.
The nonlinear response of composite beams modeled according to higher-order shear deformation theories in postbuckling is investigated. The beam ends are restrained from axial movement, and as a result the contribution of the midplane stretching is considered. The equations of motion and the boundary conditions are derived using Hamilton’s principle. The shear deformation effect on the critical buckling load and static postbuckling response is introduced using classical, first-order, and higher-order shear deformation theories. This paper presents an exact solution for the static postbuckling response of a symmetrically laminated simply supported shear-deformable composite beam. The shear effect is shown to have a significant contribution to both the buckling and postbuckling behaviors. Results of this analysis show that classical and first-order theories underestimate the amplitude of buckling while all higher-order theories, considered in this study, yield very close results for the static postbuckling response.  相似文献   

3.
A general analytical model applicable to the vibration analysis of thin-walled composite I-beams with arbitrary lay-ups is developed. Based on the classical lamination theory, this model has been applied to the investigation of load–frequency interaction curves of thin-walled composite beams under various loads. The governing differential equations are derived from the Hamilton’s principle. A finite element model with seven degrees of freedoms per node is developed to solve the problem. Numerical results are obtained for thin-walled composite I-beams under uniformly distributed load, combined axial force and bending loads. The effects of fiber orientation, location of applied load, and types of loads on the natural frequencies and load–frequency interaction curves as well as vibration mode shapes are parametrically studied.  相似文献   

4.
Frequency equation and mode shape formulae for composite Timoshenko beams   总被引:5,自引:0,他引:5  
Exact expressions for the frequency equation and mode shapes of composite Timoshenko beams with cantilever end conditions are derived in explicit analytical form by using symbolic computation. The effect of material coupling between the bending and torsional modes of deformation together with the effects of shear deformation and rotatory inertia is taken into account when formulating the theory (and thus it applies to a composite Timoshenko beam). The governing differential equations for the composite Timoshenko beam in free vibration are solved analytically for bending displacements, bending rotation and torsional rotations. The application of boundary conditions for displacement and forces for cantilever end condition of the beam yields the frequency equation in determinantal form. The determinant is expanded algebraically, and simplified in an explicit form by extensive use of symbolic computation. The expressions for the mode shapes are also derived in explicit form using symbolic computation. The method is demonstrated by an illustrative example of a composite Timoshenko beam for which some published results are available.  相似文献   

5.
Within the displacement field of a layerwise theory, two laminated beam theories for beams with general lamination are developed. In the first theory, an existing layerwise laminated plate theory is adapted to laminated beams. The procedure used in the second theory is simple and straightforward and similar to the one used in the development of plate and shell theories. These theories can also be used in developing simpler theories such as classical, first, and higher-order shear deformation laminated beam theories. Equations of motions are obtained by using Hamilton’s principle. For the assessment of the accuracy of these theories, analytical solutions for static bending and free vibration are developed and compared with those of an existing three-dimensional elasticity solution of cross-ply laminates in cylindrical bending and with the three-dimensional finite element analysis for angle-ply laminates.  相似文献   

6.
Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.  相似文献   

7.
The lateral buckling of a laminated composite beam with channel section is studied. A general analytical model applicable to the lateral buckling of a channel-section composite beam subjected to various types of loadings is derived. This model is based on the classical lamination theory, and accounts for the material coupling for arbitrary laminate stacking sequence configuration and various boundary conditions. The effects of the location of applied loading on the buckling capacity are also included in the analysis. A displacement-based one-dimensional finite element model is developed to predict critical loads and corresponding buckling modes for a thin-walled composite beam with arbitrary boundary conditions. Numerical results are obtained for thin-walled composites under central point load, uniformly distributed load, and pure bending with angle-ply and laminates. The effects of fiber orientation, location of applied load, and types of loads on the critical buckling loads are parametrically studied.  相似文献   

8.
An algorithm based on the finite element method (FEM) has been developed to study the dynamic response of composite laminated beams subjected to the moving oscillator. The first order shear deformation theory (FSDT) is assumed for the beam model. The algorithm accounts for the complete dynamic interaction between the components of system. The proposed method can also be applied to the general moving mass and the simplified moving force problems. After deriving the governing equations of motion of beam and oscillator, the corresponding equations of motion are integrated by applying the Newmark’s time integration procedures to obtain the system responses in each time step. The numerical results of free vibration and moving force problems analysis of isotropic and composite laminated beams are presented and, whenever possible, compared to the available analytical solution and other numerical results in order to demonstrate the accuracy of the present method. In addition, parametric analysis is carried out over a wide range of velocities and mass, frequency and damping ratios of system components.  相似文献   

9.
A Boundary Element Method formulation is developed for the dynamic analysis of Timoshenko beams. Based on the use of not time dependent fundamental solutions a formulation of the type called as Domain Boundary Element Method arises. Beside the typical domain integrals containing the second order time derivatives of the transverse displacement and of the rotation of the cross-section due to bending, additional domain integrals appear: one due to the loading and the other two due to the coupled differential equations that govern the problem. The time-marching employs the Houbolt method. The four usual kinds of beams that are pinned–pinned, fixed–fixed, fixed–pinned and fixed–free, under uniformly distributed, concentrated, harmonic concentrated and impulsive loading, are analyzed. The results are compared with the available analytical solutions and with those furnished by the Finite Difference Method.  相似文献   

10.
Static behavior of composite beams with arbitrary lay-ups using various refined shear deformation theories is presented. The developed theories, which do not require shear correction factor, account for parabolical variation of shear strains and consequently shear stresses through the depth of the beam. In addition, they have strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. A two-noded C1 finite element with six degree-of-freedom per node which accounts for shear deformation effects and all coupling coming from the material anisotropy is developed to solve the problem. Numerical results are performed for symmetric and anti-symmetric cross-ply composite beams under the uniformly distributed load and concentrated load. The effects of fiber angle and lay-ups on the shear deformation parameter and extension-bending-shear-torsion response are investigated.  相似文献   

11.
Two versions of finite strip method (FSM) namely semi-analytical and spline methods are developed to calculate the stability and instability regions in the case of flat and curved thin-walled composite laminated structures under harmonic axial in-plane loads in the context of so-called parametric loading. The strain terms are expressed in terms of the Koiter–Sanders theory of shallow shells. In order to demonstrate the capabilities of the developed methods in predicting parametric behavior of the subject structures, some representing results are obtained and compared with those in the literature. Good accuracy in the results is achieved.  相似文献   

12.
The dynamic response of angle-ply laminated composite plates traversed by a moving mass or a moving force is investigated. For this purpose, a finite element method based on the first-order shear deformation theory is used. Stationary and adaptive mesh techniques have been applied as two different meshing schemes. The adaptive mesh strategy is then used to avoid off-nodal position of moving mass. In this manner, the finite element mesh is continuously adapted to follow and comply with the path of moving mass. A Newmark direct integration method is employed to solve the equations of motion. Parametric study is directed to find out how different parameters like mass of the moving object as well as the type of the angle-ply laminated composite plates affect the dynamic response. Numerical results show the significant effects of the stacking order on the dynamic responses of the composite structures under a moving mass. It is found that although [30/−60/−60/30] lamination shows the highest maximum vertical deflection but [−45/45/45/−45] lamination has the highest value of the dynamic amplification factor. The dynamic amplification factor for different stacking orders and mass velocities is less than 1.25.  相似文献   

13.
Based on a modified couple stress theory, a model for composite laminated beam with first order shear deformation is developed. The characteristics of the theory are the use of rotation–displacement as dependent variable and the use of only one constant to describe the material’s micro-structural characteristics. The present model of beam can be viewed as a simplified couple stress theory in engineering mechanics. An example as a cross-ply simply supported beam subjected to cylindrical bending loads of fw = q0 sin (πx/L) is adopted and explicit expression of analysis solution is obtained. Numerical results show that the present beam model can capture the scale effects of microstructure, and the deflections and stresses of the present model of couple stress beam are smaller than that by the classical beam mode. Additionally, the present model can be reduced to the classical composite laminated Timoshenko beam model, Isotropic Timoshenko beam model of couple stress theory, classical isotropic Timoshenko beam, composite laminated Bernoulli–Euler beam model of couple stress theory and isotropic Bernoulli–Euler beam of couple stress theory.  相似文献   

14.
For the delamination and matrix crack prediction of composite laminated structures, the methods based on the damage mechanics and fracture mechanics are most commonly used. However, there are very few methods that can accurately simulate the delaminations together with matrix cracks, although the in‐plane matrix cracks always exist alongside the delaminations under impact loading. In this work, an extended layerwise method is developed to model the composite laminated beam with multiple delaminations and matrix cracks. In the displacement field, the nodes in the thickness direction are located at the middle surface of each single layer, the top surface and the bottom surface of the composite beams. The displacement field contains the linear Lagrange interpolation functions, the one‐dimensional weak discontinuous function and strong discontinuous function. The strong and weak discontinuous function are applied to model the displacement discontinuity induced by delaminations and the strain discontinuity induced by the interface between the layers, respectively. Because the nodes in the thickness direction are located at the middle surface of each single layer, the extended layerwise method can be conveniently employed to deal with the in‐plane matrix cracks combined with the extend FEM. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
16.
摘要:基于拉格朗日方程建立了复合材料封闭变截面薄壁梁的自由振动微分方程,给出了两种刚度配置下的变矩形截面悬臂直梁的自由振动方程简化形式及其相应的迦辽金法求解的固有频率。基于大型通用有限元软件ANSYS,计算了薄壁变截面悬臂梁的固有频率,并且与迦辽金法的求解结果进行了对比。分析了复合材料的弹性耦合,铺层角度和截面变化对薄壁梁的自由振动的影响。  相似文献   

17.
Digital damage fingerprints (DDFs) are a set of optimised and digitised characteristics of structural signatures, which are able to exactly and uniquely define a certain kind of structural healthy status. The DDF-based damage recognition technique includes the extraction of DDFs, assembly of damage parameters database (DPD) and subsequently inverse recognition in virtue of artificial intelligence. In this study, DDFs extracted from Lamb wave signals were employed to quantitatively assess delamination in carbon fibre-reinforced laminated beams. Characteristics of Lamb wave signals in the laminated beams were first evaluated, and DPD hosting DDFs for selected damage scenarios was constructed through numerical simulations, which was used to predict delamination in the composite beams with the aid of an artificial neural algorithm. The diagnostic results have demonstrated the excellent performance of DDF technique for quantitative damage identification.  相似文献   

18.
A new mixed finite element formulation is proposed to analyze transient coupled thermoelastic problems. Coupled model of dynamic thermoelasticity is selected for a laminated composite and a homogeneous isotropic plate. For the particular finite element developed here, there are 15 degrees of freedom at each node. Two simply supported plates are considered subjected to sinusoidally distributed mechanical and thermal loading. It is seen, by comparing the present results with results from the NISA II FEM code, that they are in good agreement.  相似文献   

19.
20.
An analytical formulation is derived for modelling the behaviour of laminated composite beams with integrated piezoelectric sensor and actuator. The major difference in approach to the solution compared to previous studies is that the analytical solution for active vibration control and suppression of smart laminated composite beams is presented in this paper. The governing equation is based on the first-order shear deformation theory (Mindlin plate theory), which is applicable for both thin and moderately beams, and includes the coupling between mechanical and electrical deformations. The voltage generated by the sensor layer and response of the beam to the actuator voltage can be computed independently. In this study, the new assumption of harmonic vibration is introduced, which includes both of the sine and cosine terms. Another contribution of this paper is introducing the transformation method of complex numbers to reduce the order of the governing equation of smart laminated beams. Thus, the exact solution of the reduced governing equation can be obtained by using MATLAB and the entire numerical results are presented. The behaviour of the output voltage from the sensor layer and the input voltage acting on the actuator layer is also studied. Graphical results are presented to demonstrate the ability of closed-loop system to actively control the vibration of laminated beams and it shows a good control effect. The influence of stacking sequence on the controlled transient response of the laminated beam is examined. Finally, the experiential formulation of the amplitude of beam vibration varying with the negative velocity feedback control gain has also been evaluated. The present method has a general application in this field of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号