首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-stage heat pumps composed of a condenser, evaporator, compressor, suction line heat exchanger, and low and/or high stage economizers are studied by computer simulation. Their thermodynamic performance and design options are examined for various working fluids. In the simulation, HCFC22/HCFC142b and HFC134a are studied as an interim and long term alternatives for CFC12 while HFC32/HFC134a and HFC125/HFC134a are studied as long term alternatives for HCFC22. The results indicate that the three-stage super heat pump with appropriate mixtures is up to 27.3% more energy efficient than the conventional single-stage system with pure fluids. While many factors contribute to the performance increase of a super heat pump, the most important factor is found to be the temperature matching between the secondary heat transfer fluid and refrigerant mixture, which is followed by the use of a low stage economizer and suction line heat exchanger. The contribution resulting from the use of a high stage economizer, however, is not significant. With the suction line heat exchanger, the system efficiency increases more with the fluids of larger molar liquid specific heats. From the view point of volumetric capacity and energy efficiency, a 40%HCFC22/60%HCFC142b mixture is proposed as an interim alternative for CFC12 while a 25%HFC32/75%HFC134a mixture is proposed as a long term alternative for HCFC22.  相似文献   

2.
A single-stage vapour absorption refrigeration system (VARS) is tested with monochlorodifluoromethane (HCF22) as refrigerant and different absorbents: dimethylether of tetraethylene glycol (DMETEG) and dimethyl acetamide (DMA). The influence of generator temperatures in the range 75–95°C, which represents low-grade heat sources, is studied. Cooling water temperatures were varied between 20 and 30°C. Two cases of cooling water flow paths are considered, i.e. water entering either absorber or condenser, which are connected in series. For HCFC22-DMETEG, COP values in the range 0.2–0.36 and evaporator temperatures between 0 and 10°C are obtained. For HCF22-DMA, COP values in the range 0.3–0.45 and evaporator temperatures between −10 and 10°C are obtained. It is observed that HCFC22-DMETEG can work at lower heat source temperatures than HCFC22-DMA. However, at the same operating conditions HCFC22-DMA is better from the viewpoints of circulation ratio and COP. Experiments also show that at low heat source temperature, cooling water temperature has strong influence on circulation ratio but does not affect COP significantly. Preferably, cooling water should first flow through the condenser and then through the absorber in order to achieve improved overall performance.  相似文献   

3.
This paper reports heat transfer results obtained during condensation of refrigerant propane inside a minichannel aluminium heat exchanger vertically mounted in an experimental setup simulating a water-to-water heat pump. The condenser was constructed of multiport minichannel aluminium tubes assembled as a shell-and-tube heat exchanger. Propane vapour entered the condenser tubes via the top end and exited sub-cooled from the bottom. Coolant water flowed upward on the shell-side. The heat transfer areas of the tube-side and the shell-side of the condenser were 0.941 m2 and 0.985 m2, respectively. The heat transfer rate between the two fluids was controlled by varying the evaporation temperature while the condensation temperature was fixed. The applied heat transfer rate was within 3900–9500 W for all tests. Experiments were performed at constant condensing temperatures of 30 °C, 40 °C and 50 °C, respectively. The cooling water flow rate was maintained at 11.90 l min−1 for all tests. De-superheating length, two-phase length, sub-cooling length, local heat transfer coefficients and average heat transfer coefficients of the condenser were calculated. The experimental heat transfer coefficients were compared with predictions from correlations found in the literature. The experimental heat transfer coefficients in the different regions were higher than those predicted by the available correlations.  相似文献   

4.
We propose in this article an absorption chiller operating with binary alkane mixtures as an alternative to compression machines. It is an installation using low-level energy at a temperature below 150 °C (waste heat or solar energy) and operating with environmentally friendly fluids. Ten mixtures are considered and compared with two cooling mediums of the condenser and the absorber: the ambient air at 35 °C and the water at 25 °C. For an air-cooled chiller, the COP reaches 0.37 for the n-butane/octane system. This value remains 27% lower than that of an ammonia/water installation operating under the same conditions. For a water-cooling chiller, the n-butane/octane and propane/octane systems give a COP of about 0.63, which is comparable to that of the ammonia/water system. When n-butane is used as refrigerant, the machine works at a pressure under 5 bars, which is an advantage compared with machines working with ammonia/water mixtures.  相似文献   

5.
Non-azeotropic refrigerant mixtures (NARMs) are investigated for a two-temperature level heat exchange process found in a domestic refrigerator-freezer. Ideal (constant air temperature) heat exchange processes are assumed. The results allow the effects of intercooling between the evaporator refrigerant stream and the condenser outlet stream to be examined in a systematic manner. For the conditions studied, an idealized NARM system will have a limiting coefficient of performance (COP) that is less than that of the best performing pure refrigerant component. However, for non-ideal heat exchange processes (gliding air temperature), the NARM-based system can have a higher limiting COP than a system running on either pure NARM component. Intercooling significantly affects the COP of NARM-based systems; however, depending on the location of ‘pinch points’ in the heat exchangers, only one intercooling heat exchanger may be needed to obtain a NARM's maximum refrigerator COP. The results are presented for mixtures of R22–R142b, R22–R123 and R32–R142b.  相似文献   

6.
In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290 (propane) and R1270 (propylene) were tested in a breadboard heat pump in an attempt to substitute HCFC22 used in residential air-conditioners. The heat pump was of 3.5 kW capacity with water as the heat transfer fluid (HTF) in the evaporator and condenser that are in a counter current flow configuration. All tests were conducted with the HTF temperatures fixed to those found in the ARI test A condition. Test results show that ternary mixtures composed of R32, R125, and R134a have a 4–5% higher coefficient of performance (COP) and capacity than HCFC22. On the other hand, ternary mixtures containing R125, R134a and R152a have both lower COPs and capacities than HCFC22. R32/R134a binary mixtures show a 7% increase in COP with the similar capacity to that of HCFC22 while R290/R134a azeotrope shows a 3–4% increases in both COP and capacity. The compressor discharge temperatures of the mixtures tested are much lower than those of HCFC22, indicating that these mixtures would offer better system reliability and longer life time than HCFC22. Finally, test results with a suction line heat exchanger (SLHX) indicate that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.  相似文献   

7.
A comparison of thermodynamic performances of sorption systems (liquid absorption, adsorption, ammonia salts and metal hydrides) is carried out for typical applications (deep-freezing, ice making, air-conditioning and heat pumping) with either air-cooled or water-cooled heat sink. The results are given in terms of cooling coefficient of performance (COP) (heating COP or coefficient of amplification (COA) for the heat pump), cooling (heating) power versus reactor volume or weight and thermodynamic efficiency. LiBr–water systems show the best results for air-conditioning except when small units are required (metal hydride systems lead to more compact units). Other systems, however, show better results for other applications (chemical reaction with ammonia salts for deep-freezing, adsorption for heat pumping).  相似文献   

8.
A novel silica gel–water adsorption chiller is designed and its performance is predicted in this work. This adsorption chiller includes three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber as the evaporator. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute an adsorption/desorption unit. The evaporators of two adsorption/desorption units are combined together by a heat-pipe heat exchanger to make continuous refrigerating capacity. In this chiller, a vacuum valve is installed between the two adsorption/desorption vacuum chambers to increase its performance especially when the chiller is driven by a low temperature heat source. The operating reliability of the chiller rises greatly because of using fewer valves. Furthermore, the performance of the chiller is predicted. The simulated results show that the refrigerating capacity is more than 10 kW under a typical working condition with hot water temperature of 85 °C, the cooling water temperature of 31 °C and the chilled water inlet temperature of 15 °C. The COP exceeds 0.5 even under a heat source temperature of 65 °C.  相似文献   

9.
A ‘three-temperature’ model of the adsorption cycles with heat regeneration is used for investigating and analysing the influence of different parameters on the performance of such cycles. The influence of the heat source temperature on the thermodynamic efficiency (COP/COPCarnot) is investigated. The result is that the thermodynamic efficiency of the cycle is always limited. In order to reduce the internal irreversibilities, different internal vapour transports for pressurising (depressurisation) the adsorber are investigated: first, adiabatic direct pressurisation (depressurisation) with the condenser (evaporator) instead of pressure changes by heat transfer; second, adiabatic internal vapour recovery between the adsorbers (partial pressurisation/depressurisation); third, separation of the adsorber into separate compartments between which vapour cannot be redistributed during pressurisation or depressurisation. Results show that the first process significantly reduces the COP, while the second one enhances the cooling power, and the third one does not change the performance. Analysis gives satisfactory explanation of these results.  相似文献   

10.
Simulation analyses for a vapour compression heat pump cycle using nonazeotropic refrigerant mixtures (NARMs) of R22 and R114 are conducted under the condition that the heat pump thermal output and the flow rate and inlet temperatures of the heat sink and source water are given. The heat transfer coefficients of the condensation and evaporation are calculated with empirical correlations proposed by the authors. The validity of the evaluation method and the correlations is demonstrated by comparison with experimental data. The relations between the coefficient of performance (COP) and composition are shown under two conditions: (1) the constant heat transfer length of the condenser and evaporator; and (2) the constant temperature of refrigerant at the heat exchanger inlet. The COP of the NARMs is higher than that of pure refrigerant when the heat transfer lengths of the condenser and evaporator are sufficiently long.  相似文献   

11.
This is the second paper of a series that assesses the performance of a refrigeration system model by means of cycle parameters. In this case, the condensation temperature is the parameter to study and it is focused on fin and tube condensers. It also studies the influence of the heat transfer models on the estimation of this refrigeration cycle parameter and different correlations for the heat transfer coefficients have been implemented in order to characterise the heat transfer in the heat exchangers. The flow inside the heat exchangers is considered one-dimensional as in previous works. In the cycle definition, other submodels for all the cycle component have been taken into account to complete the system of equations that characterises the behaviour of the refrigeration cycle. This global system is solved by means of a Newton–Raphson algorithm and a known technique called SEWTLE is used to model the heat exchangers. Some experimental results are employed to compare the condensation temperatures provided by the numerical procedure and to evaluate the performance of each heat transfer coefficient. These experimental results correspond to an air-to-water heat pump and are obtained by using R-22 and R-290 as refrigerants.  相似文献   

12.
提出R404A直接接触凝结换热的制冷循环,分析R404A直接接触凝结制冷循环的热力性能,并与常规双级压缩制冷循环的性能进行对比。得出结论:在一定的冷凝温度、蒸发温度和过冷液体的过冷度下,直接接触凝结制冷循环存在最佳的饱和液体温度,并在此最佳的饱和液体温度下,获得最优的性能和最小的冷凝热负荷,随着过冷液体的过冷度增大和蒸发温度升高,直接接触凝结制冷循环的性能系数增加、冷凝热负荷减少,获得最优性能的最佳饱和液体温度值提高。过冷液体的过冷度为25℃时,直接接触凝结制冷循环的最佳性能系数较双级压缩制冷循环的最佳性能系数提高6.2%。直接接触凝结制冷循环的最小冷凝热负荷较双级压缩制冷循环的最小冷凝热负荷减小1.8%。  相似文献   

13.
This paper studies refrigeration cycles in which plate heat exchangers are used as either evaporators or condensers. The performance of the cycle is studied by means of a method introduced in previous papers which consists of assessing the goodness of a calculation method by looking at representative variables such as the evaporation or the condensation temperature depending on the case evaluated. This procedure is also used to compare several heat transfer coefficients in the refrigerant side. As in previous works the models of all the cycle components are considered together with the heat exchanger models in such a way that the system of equations they provide is solved by means of a Newton–Raphson algorithm. Calculated and measured values of the evaporation and the condensation temperatures are also compared. The experimental results correspond to the same air-to-water heat pump studied in other papers and they have been obtained by using refrigerants R-22 and R-290.  相似文献   

14.
The convective thermal wave is part of a patented cycle which uses heat transfer intensification to achieve both high efficiency and small size from a solid adsorption cycle. Such cycles normally suffer from low power density because of poor heat transfer through the adsorbent bed. Rather than attempting to heat the bed directly, it is possible to heat the refrigerant gas outside the bed and to circulate it through the bed in order to heat the sorbent. The high surface area of the grains leads to very effective heat transfer with only low levels of parasitic power needed for pumping. The new cycle presented here also utilises a packed bed of inert material to store heat between the adsorption and desorption phases of the cycle. The high degree of regeneration possible leads to good coefficients of performance (COPs). Thermodynamic modelling, based on measured heat transfer data, predicts a COP (for a specific carbon) of 0.90 when evaporating at 5°C and condensing at 40°C, with a generating temperature of 200°C and a modest system regenerator effectiveness of 0.8. Further improvement is possible. Experimental heat transfer measurements and cycle simulations are presented which show the potential of the concept to provide the basis of a gas-fired air conditioner in the range 10–100 kW cooling. A research project to build a 10-kW water chiller is underway. The laboratory system, which should be operational by June 1997, is described.  相似文献   

15.
Two adsorption systems are considered: zeolite–water and activated carbon–methanol, both consisting of two ‘uniform temperature' adsorbent beds operating with internal heat recovery by a heat carrier circuit. Regarding the zeolite–water system, the performance obtained with a new adsorbent bed, with good heat transfer properties, is compared with a traditional tube and fin exchanger embedded with zeolite pellets. The performances were calculated by using a dynamic model developed and validated previously. Results show that the system based on the new adsorber has a higher specific power and the same Coefficient of Performance. Results of simulation for adsorbers consisting of finned tube heat exchangers and utilising the activated carbon–methanol pair are also presented.  相似文献   

16.
This paper presents an experimental study on the performance of hydrocarbon refrigerants, namely propane and a liquefied petroleum gas (LPG) mix as suitable replacements for the widely used refrigerant HCFC22 in refrigeration and heat pump applications. A cylinder of commercially available LPG from New Zealand market was obtained for this study. The composition of the specific LPG mix (by mass fraction) was propane (HC290)—98.95%, ethane (HC170)—1.007%, iso-butane (HC600a)—0.0397% and other constituents in small proportions. Experiments were carried out in a laboratory heat pump test facility with maximum condenser capacity of approximately 15 kW. Condensing temperatures were held constant at 35, 45 and 55°C, while evaporating temperatures were varied over a wide range from − 15 to + 15°C. All tests were carried out at constant degree of superheat (about 1 K) and subcooling (about 8 K). All appropriate precautions were observed against any leaks or fire.The analysis revealed that the hydrocarbon refrigerants performed better than HCFC22 but with a small loss of condenser capacity. The mass flow rate and compressor discharge temperature were found to be significantly lower than HCFC22. The performance of the specific LPG mix tested was found to be better than HC290 at higher condensing temperatures but poorer at a lower condensing temperature. No adverse effects were found with the LPG mix despite the presence of little moisture (less than 0.01%) in its composition. The study reveals that LPG of the tested composition (i.e. predominantly a mixture of propane, ethane and iso-butane) can be an excellent refrigerant in heat pump/refrigeration applications.  相似文献   

17.
Performance of a heat pump system using hydrocarbon refrigerants has been investigated experimentally. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as working fluids in a heat pump system. The heat pump system consists of compressor, condenser, evaporator, and expansion device with auxiliary facilities such as evacuating and charging unit, the secondary heat transfer fluid circulation unit, and several measurement units. Performance of each refrigerant is compared at several compressor speeds and temperature levels of the secondary heat transfer fluid. Coefficient of performance (COP) and cooling/heating capacity of hydrocarbon refrigerants are presented. Experimental results show that some hydrocarbon refrigerants are comparable to R22. Condensation and evaporation heat transfer coefficients of selected refrigerants are obtained from overall conductance measurements for subsections of heat exchangers, and compared with those of R22. It is found that heat transfer is degraded for hydrocarbon refrigerant mixtures due to composition variation with phase change. Empirical correlations to estimate heat transfer coefficients for pure and mixed hydrocarbons are developed, and they show good agreement with experimental data. Some hydrocarbon refrigerants have better performance characteristics than R22.  相似文献   

18.
The performance of a propane/isobutane (R290/R600a) mixture was examined for domestic refrigerators. A thermodynamic cycle analysis indicated that the propane/isobutane mixture in the composition range of 0.2 to 0.6 mass fraction of propane yields an increase in the coefficient of performance (COP) of up to 2.3% as compared to CFC12. For the actual tests, two commercial refrigerators of 299 and 465 l were used. For both units, all refrigeration components remained the same throughout the tests, except that the length of the capillary tube and amount of charge were changed for the mixture. Each refrigerator was fully instrumented with more than 20 thermocouples, two pressure transducers, and a digital watt/watt-h meter. For each unit, both ‘energy consumption test’ and ‘no load pull-down test’ were conducted under the same condition. The experimental results obtained with the same compressor indicated that the propane/isobutane mixture at 0.6 mass fraction of propane has a 3–4% higher energy efficiency and a somewhat faster cooling rate than CFC12. The mixture showed a shorter compressor on-time and lower compressor dome temperatures than CFC12. In conclusion, the proposed hydrocarbon mixture seems to be an appropriate long term candidate to replace CFC12/HFC134a from the viewpoint of energy conservation requiring minimal changes in the existing refrigerators.  相似文献   

19.
Over the past few decades there have been considerable efforts to use adsorption (solid/vapor) for cooling and heat pump applications, but intensified efforts were initiated only since the imposition of international restrictions on the production and utilization of CFCs and HCFCs. In this paper, a dual-mode silica gel–water adsorption chiller design is outlined along with the performance evaluation of the innovative chiller. This adsorption chiller utilizes effectively low-temperature solar or waste heat sources of temperature between 40 and 95 °C. Two operation modes are possible for the advanced chiller. The first operation mode will be to work as a highly efficient conventional chiller where the driving source temperature is between 60 and 95 °C. The second operation mode will be to work as an advanced three-stage adsorption chiller where the available driving source temperature is very low (between 40 and 60 °C). With this very low driving source temperature in combination with a coolant at 30 °C, no other cycle except an advanced adsorption cycle with staged regeneration will be operational. The drawback of this operational mode is its poor efficiency in terms of cooling capacity and COP. Simulation results show that the optimum COP values are obtained at driving source temperatures between 50 and 55 °C in three-stage mode, and between 80 and 85 °C in single-stage, multi-bed mode.  相似文献   

20.
The effect of different type of condensers on the performance of R410A residential air-conditioning systems was investigated in this study. Two R410A residential air-conditioning systems, one with a microchannel condenser and the other with a round-tube condenser, were examined experimentally, while the other components of the two systems were identical except the condensers. Two condensers had almost same package volumes. The two systems were operated in separate environmental chambers and their performance was measured in ARI A, B, and C conditions. Both the COP and cooling capacity of the system with the microchannel condenser were higher than those for the round-tube condenser in all test conditions. The refrigerant charge amount and the refrigerant pressure drop were measured; the results showed a reduction of charge and pressure drop in the microchannel condenser. A numerical model for the microchannel condenser was developed and its results were compared with the experiments. The model simulated the condenser with consideration given to the non-uniform air distribution at the face of the condenser and refrigerant distribution in the headers. The results showed that the effect of the air and refrigerant distribution was not a significant parameter in predicting the capacity of the microchannel condenser experimentally examined in this study. Temperature contours, generated from the measured air exit temperatures, showed the refrigerant distribution in the microchannel condenser indirectly. The temperature contours developed from the model results showed a relatively good agreement with the contours for measured air exit temperatures of the microchannel condenser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号