首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
正十烷/氢气/空气点火延迟特性数值分析   总被引:3,自引:0,他引:3  
点火延迟时间是燃烧室设计的关键参数,为了揭示氢气对碳氢燃料点火特性的影响,通过CHEMKIN-PRO程序包和两种正十烷燃烧的化学动力学反应机理,计算了正十烷/氢气/空气预混火焰的点火延迟时间,分析了不同含氢比、气体压力和当量比下的点火延迟特性.结果表明:在温度超过临界值T_0时,点火延迟时间随氢气质量比增加而缩短,说明氢气对燃烧反应起到促进作用;当温度低于这个临界值时,氢气对燃烧反应起抑制作用,使得点火延迟时间随氢气质量比增加而延长.  相似文献   

2.
快速预测和控制污染物是燃烧室技术发展的重要问题。因此,对一种空气分级燃烧室结构进行流动数值模拟,根据模拟结果构建燃烧室化学反应器的网络模型,探究一级绝热火焰温度对燃烧室NO_x排放的影响并与传统贫预混燃烧室进行了比较,研究了空气分配比和停留时间对NO_x排放的影响。结果表明:空气分级燃烧室排放NO_x量比传统贫预混燃烧室少;减少一级空气的喷入量,使一级燃烧室处于富油燃烧,能有效降低NO_x排放;在不影响燃烧室燃烧情况下,适当降低一级燃烧室停留时间,能达到降低NO_x排放的目的。  相似文献   

3.
为探索多孔介质内超绝热燃烧的特性,搭建了自由堆积多孔介质超绝热燃烧试验台架,测量了不同化学当量比(0.4~0.7)的甲烷/空气预混气体的超绝热燃烧特性.自由堆积多孔介质由直径为3和6 mm的Al2O3小球在陶瓷管(Φ38 mm×500 mm)中堆积而成,孔隙率为0.42.试验结果表明,在多孔介质中只有当燃烧波正向传播时才可能产生超绝热燃烧.在贫燃条件下超绝热燃烧的上限化学当量比为0.7,下限化学当量比为0.4;当化学当量比小于0.4或大于0.7时,在贫燃条件下的超绝热燃烧将不能实现.多孔介质中预混燃烧的火焰锋面速度约为7.82 μm/s,最大燃烧锋面温度超过绝热燃烧温度139 K.  相似文献   

4.
H2O/CO2组分对氢和乙烯超声速燃烧室性能影响数值模拟   总被引:12,自引:0,他引:12  
文章采用数值计算方法,评估了H2O与CO2两种污染组分对氢、乙烯超声速燃烧室性能的影响。针对纯净空气和含H2O/CO2污染空气,在来流总温、总压、马赫数、氧气摩尔含量、燃料当量油气比相当的条件下对氢、乙烯超声速燃烧室分别进行了三维、二维燃烧流场数值模拟,其中氢气当量比为0.42,乙烯当量比为0.57。计算中考虑的H2O组分摩尔含量包括7.5%和17.5%,CO2组分摩尔含量为7.5%。最后,将数值计算结果与相应实验测量值进行了对比分析。研究结果表明:数值计算结果与实验测量值比较接近,反映的H2O、CO2污染组分影响趋势一致的,计算结果可以有效分辨出污染组分对燃烧室性能的影响;H2O、CO2污染组分的存在降低了燃烧总温升、燃烧效率,进而降低了燃烧室壁面压力,总体上造成燃烧室性能的下降。  相似文献   

5.

为了解决氢内燃机浓燃起动时由于润滑油进入燃烧室而造成的HC、CO排放较高问题,进一步优化氢内燃机冷起动性能,在一台经改装的1.6 L四缸进气道燃料喷射氢内燃机上,试验研究了浓燃条件下点火角对氢内燃机冷起动燃烧与排放特性的影响.试验中,将氢内燃机冷却水及机油温度控制在(24±0.5)℃,点火角由25° BTDC逐渐推迟至10° ATDC.试验结果表明:在过量空气系数为0.7条件下,随着点火角的逐渐推迟,氢内燃机冷起动转速与首循环缸内压力峰值均呈现先升高后降低的变化趋势,起动成功时间呈现先缩短后延长的变化趋势.其中当点火角为15° BTDC时,氢内燃机成功起动时间最短,首循环缸内压力峰值最大;随点火角的推迟,氢内燃机冷起动前50个循环火焰发展期平均值先缩短后有所延长,而快速燃烧持续期逐渐延长;由于蒸发的润滑油进入气缸内而导致排放中出现一部分HC和CO污染物.当点火角由25° BTDC推迟至10° ATDC时,氢内燃机冷起动前6 s内NOx、HC及CO排放平均值分别降低约84.9%、33.6%和23.8%.由此可见,推迟点火角有利于降低纯氢内燃机冷起动过程中NOx、HC及CO排放.

  相似文献   

6.
为了实现高效稀燃,纯气体燃料船用主机需要采取预混合气的"分区控制、湍流激扰"来保证可靠点火和快速火焰传播。设计了某型号气体燃料船用主机的燃烧系统。应用三维CFD软件对其工作过程进行了数值模拟分析,研究了缸内流场变化、燃料-空气混合过程、点火和火焰传播过程,分析了预燃室内燃料加策略。研究为主机的燃烧系统设计和加浓喷射策略设计提供了初始数据支撑。研究结果表明:在点火时刻,主机预燃室内形成了当量比为1.05的稍浓混合气,有利于稳定点火和火焰快速传播;点火后,经由预燃室喷孔喷出的引燃火焰在主燃室内迅速扩展,在50°CA内即完成主燃烧。  相似文献   

7.
为改善预混火焰的燃烧稳定性,提出双级贫预混燃烧的火焰组织思路,对预混气流进行不同当量比的径向分级,使其能在较低当量比时稳定燃烧.以一定流动条件下直管射流火焰和双级贫预混火焰的中心气流所能达到的最小稳燃当量比作为熄火边界,实验测量并分析火焰不同组织方式和环流条件变化对熄火边界的影响.结果表明:布置在射流火焰外围的环流对火焰根部附近的浓度和速度分布有一定影响;双级贫预混火焰的二级预混环流能够通过减弱外界环境气氛对锋面前预混气的稀释作用而拓宽火焰的熄火边界;环流的预混当量比是影响火焰熄火边界的关键.与均一当量比的直管射流火焰相比,双级贫预混火焰能够在更低的当量比条件下稳定燃烧,对工业上控制NOx排放有着重要的意义.  相似文献   

8.
柱状燃烧室内旋流喷雾过程的数值模拟   总被引:1,自引:0,他引:1  
采用Eulerian-Lagrangian方法对不同空气旋流强度下柱状燃烧室内的旋流喷雾过程进行了数值模拟.空气旋转射流将诱使燃烧室内产生中心回流区和角回流区,随着旋流数S的增大,中心回流区呈轴向缩短、径向膨胀的趋势,而角回流区则逐渐减小.喷雾射流与中心回流边界层内,存在强烈的动量交换,随着轴向距离的增加,两相平均速度由多峰分布逐渐转变为单峰分布;随着旋流数S的增大,中心回流对喷雾射流的压迫作用有所减弱.旋流数S过小将造成小颗粒碰壁、燃料高浓度区集中于燃烧室前部,旋流数S过大则导致大颗粒穿透混合边界层、燃料高浓度区严重后移,都可能恶化燃烧效果.对于气泡雾化喷嘴,选取S=1.41的旋流配风装置可以取得良好的空气/液雾混合效果.  相似文献   

9.
等离子体助燃是一项能有效缩短点火延迟时间、提高燃烧效率和燃烧稳定性的新技术,可应用于航空发动机和汽车内燃机。为研究非平衡等离子体对丙烷燃烧的强化作用,建立了化学动力学模型,计算分析了非平衡等离子体中所含活性组分对丙烷燃烧的点火延迟时间和层流火焰传播速度的影响。计算结果表明:在丙烷/氧气/氩气预混气体中加入活性粒子(O、OH、NO)和自由基(CH2、CH3),混合气体的点火延迟时间减小2~3个量级,加入1%NO后,燃烧过程中活性中间体(O、OH、CH、CH2、CH3)的摩尔浓度会明显增加;化学当量比φ=0.8~1.0范围内的丙烷/空气预混气体燃烧时,加入自由基CH或CH3能增强层流火焰传播速度,在φ=0.8~1.2范围内,加入1%的活性粒子O、OH,火焰传播速度明显提高。  相似文献   

10.
在定容燃烧弹中利用甲烷空气球形火焰探索了微波辅助点火(MAI)技术在CO2稀释条件下的点火性能。通过对比环境压力0.2 MPa下点火后火焰核心半径以及形貌等特征,评估了MAI在CO2稀释比0~20%以及当量比0.6~1.4范围内较火花点火(SI)模式的增强效果。试验结果表明,脉冲重复频率为1 kHz的微波可以在火焰表面诱发褶皱并使火焰明显变形。在当量比0.75的条件下,采用MAI模式将CO2稀释比极限拓展到了16%,而在此条件下SI模式无法点燃混合气。随着CO2稀释比由0增大到16%时,微波诱发的火褶皱愈发不明显,而微波对火焰半径的增量在CO2稀释比为4%时达到峰值。这被认为是随着CO2稀释比的增加,微波引起的反应动力学增强与热效应之间此消彼长共同作用的结果。8%的CO2稀释比明显缩小了SI点火的可燃当量比范围,而MAI可以维持相同的点火当量比范围。  相似文献   

11.
In order to investigate the NOxemission of hydrogen internal combustion engines.A test system for four-cylinder intake port-fuel-injection hydrogen internal combustion engine(H2ICE)is established to study the effect of fuel-air equivalence ratio,ignition advance angle,engine speed and exhaust gas recirculation on NOx emission.Experimental results show that the fuel-air equivalence ratio is the key factor to NOxemission,NOxemission concentration is always higher than 8 000×10-6 when the fuel-air equivalence ratio is larger than 0.8and lower than 500×10-6 when the fuel-air equivalence ratio is smaller than 0.5.The ignition advance angle and engine speed also play important roles on NOxemission formation.EGR is an useful method to reduce NOx emission concentration at large fuel-air equivalence ratio especially when engine speed is low and EGR ratio is high.  相似文献   

12.
乙醇燃料均质压燃发动机的试验研究   总被引:7,自引:3,他引:4  
利用进气预热和废气再循环(EGR)控制方法,在由CA6110柴油机改造的单缸发动机上进行了以乙醇为燃料的均质混合气压燃(Homogeneous Charge Compression Ignition,HCCI)试验研究。结果表明:在过量空气系数λ=1~9时,发动机可以实现HCCI燃烧,但由过量空气系数和EGR率表示的HCCI工作范围受爆震和部分燃烧的限制。乙醇燃料HCCI燃烧最大平均指示压力可达到0.6 MPa,指示效率可达到60%。在HCCI燃烧中只产生少量的NOx,但是未燃HC和CO的排放较高。  相似文献   

13.
To study the economic advantages of hydrogen internal combustion engine,an experimental study was carried out using a 2.0Lport fuel-injected(PFI)hydrogen internal combustion engine.Influences of fuel-air equivalence ratioΦ,speed,and ignition advance angle on heat efficiency were determined.Test results showed that indicated thermal efficiency(ITE)firstly increased with fuel-air equivalence ratio,achieved the maximum value of 40.4%(Φ=0.3),and then decreased whenΦ was more than 0.3.ITE increased as speed rises.Mechanical efficiency increased as fuel-air equivalence ratio increased,whereas mechanical efficiency decreased as speed increased,with maximum mechanical efficiency reaching 90%.Brake thermal efficiency(BTE)was influenced by ITE and mechanical efficiency,at the maximum value of 35%(Φ=0.5,2 000r/min).The optimal ignition advance angle of each condition resulting in the maximum BTE was also studied.With increasing fuel-air equivalence ratio,the optimal ignition angle became closer to the top dead center(TDC).The test results and the conclusions exhibited a guiding role on hydrogen internal combustion engine optimization.  相似文献   

14.
通过分析系统温度变化与主要中间产物生成率,以敏感度分析为基础对GRI-MECH3.0机理进行简化,最后得出一个包含25种组分、36个反应的简化机理。此简化机理适用于天然气HCCI模式燃烧着火相位研究,与详细机理在着火点预测上吻合良好。经验证,在较广的初始压力、温度、转速、压缩比、空燃比变动范围内可以保证与详细机理相近的精度。同时在简化过程中梳理出着火延迟期的关键反应。  相似文献   

15.
Co-combustion biomass and coal can effectively reduce the emission of CO2. O2/H2O combustion is regarded as the next generation of oxy-fuel combustion technology. By co-combustion biomass and coal under oxy-fuel condition, the emission of CO2 can be minimized. This work investigates the co-combustion characteristics of single particles from pine sawdust (PS) and bituminous coal (BC) in O2/N2, O2/CO2 and O2/H2O atmospheres at different O2 mole fractions (21%, 30% and 40%). The experiments were carried out in a drop tube furnace (DTF), and a high speed camera was used to record the combustion process of fuel particles. The combustion temperature was measured by a two-color method. The experiments in O2/N2 atmosphere indicate that the particles from pine sawdust and bituminous coal all ignite homogeneously. After replacing H2O for N2, the combustion temperature of volatiles of blended fuel particles decreases, while the combustion temperature of char increases. The ignition delay time in O2/H2O atmosphere is shorter than that in O2/N2 or O2/CO2 atmosphere. The combustion temperature of volatiles of blended fuel particles increases as the mass fraction of bituminous coal increases, while the combustion temperature of char of blended fuel particles is higher than that of biomass or bituminous coal. The ignition delay time of blended fuel particles increases with the increasing mass fraction of bituminous coal, and the experimental ignition delay time of blend fuel particles is shorter than the theoretical one. These reveal a synergy during co-combustion process of pine sawdust and bituminous coal.  相似文献   

16.
提出一种适用于气体燃料燃烧的横隔板式定容燃烧弹系统,在此系统中进行了甲烷空气射流引燃的实验研究.通过对压力曲线及火焰传播纹影图片进行分析,探究孔径、初始压力和当量比等初始条件对射流引燃过程的影响.研究结果表明,一定范围内,增大孔径可以提高甲烷燃烧速率;随着当量比的增加,压力峰值升高并且对应出现时刻提前;在不同当量比和孔径下,初始压力增大,压力峰值随之增加.  相似文献   

17.
Homogeneous and stable combustion can be realized in a porous medium (PM) engine where a chemically inert PM is mounted in the combustion chamber. To understand the mechanism of the PM engine, we simulated the working process of a PM engine fueled with natural gas (CH4) using an improved version of KIVA-3V and investigated the effects of the initial PM temperature, the PM structure as well as the fuel injection timing on the compression ignition of the engine. The improved version of KIVA-3V was verified by simulating the experiment of Zhdanok et al. for the superadiabatic combustion of CH4-air mixtures under filtration in a packed bed. The numerical results are in good agreement with experimental data for the speed of combustion wave. Computational results for the PM engine show that the initial PM temperature is the key factor in guaranteeing the onset of compression ignition of the PM engine at a given compression ratio. The PM structure affects greatly both convective heat transfer between the gas and solid phase in the PM and the dispersion effect of the PM. Pore diameter of the PM is a crucial factor in determining the realization of combustion in the PM engine. Over-late fuel injection timing (near TDC) cannot assure a compression ignition of the PM engine. Supported by the National Natural Science Foundation of China (Grant No. 50476073)  相似文献   

18.
基于快速压缩机的甲烷着火延迟期的研究   总被引:2,自引:0,他引:2  
为了研究甲烷(CH4)的燃烧特性,在初始温度288 K、驱动压力0.25~0.65 MPa、初始压力0.06~0.10MPa、当量比0.57~1.33的实验条件下,利用快速压缩机(RCM)研究了驱动压力、初始压力和当量比对CH4/O2/Ar混合气着火延迟期的影响.利用CHMKIN软件进行了上止点温度对CH4/O2/Ar混合气着火延迟期影响及与实验相同初始压力、当量比条件下的模拟计算及敏感性分析.结果表明:一定驱动压力范围内,CH4/O2/Ar混合气着火延迟期在较小范围内波动,驱动压力过高时,混合气着火延迟期略有延长,而驱动压力过低时,混合气着火延迟期明显延长;随上止点温度升高,CH4/O2/Ar混合气着火延迟期呈缩短趋势;不同当量比下,随初始压力的增加,CH4/O2/Ar混合气着火延迟期均呈缩短趋势;不同初始压力下,随当量比的增加,CH4/O2/Ar混合气着火延迟期均呈延长趋势.  相似文献   

19.
The L, H and C curves in P-T phase are proposed to describe the minimal, maximal and critical characteristics of ignition time of H2/O2 combustion system, respectively. The features of H2/O2(Air) combustion system, including explosion or not as well as the time delay to achieve its explosion status, can be well shown by explosion limits and these proposed curves. These curves can be described by 1.2k 1=k s [Ms], (k 11/k 10+1)k 1=k s [Ms], and 2k 1=k s [Ms], respectively, which provide a physical explanation for these curves and give another way to establish them. Based on the contour of ignition time, the Z-type explosion limits can be explained by thermal explosion theory. Furthermore, the ignition distance of supersonic combustion is predicted according to the ignition time obtained in a Semenov system, which is very reasonable.  相似文献   

20.
Ignition delay times of butanol isomers/n-heptane mixture were measured using a rapid compression machine at compressed pressures of 15,20 and 30 bar,in the compressed temperature range of 650–830 K and equivalence ratio of 1.0.Sensitivity analysis and reaction fluxes analysis were performed using a detailed mechanism of blend fuels so as to evaluate the impact of n-heptane addition and temperature variation on the ignition and combustion process.Over the experimental conditions in this study,the blend fuels displays apparent low and high temperature reactions and a negative-temperature-coefficient(NTC)behavior.With increasing butanol isomers mole fraction in the mixtures,the ignition delay times increase.It is worth noting that the suppression to n-heptane ignition from tert-butanol is very limited.The ignition delay time of 40/60 tert-butanol/n-heptane mixture is smaller than other three kinds of blends.With the increasing of tert-butanol mole fraction,the increasing range of its ignition delay time is very large.Moreover,compressed pressure has a limited effect on the ignition of blend mixture at low temperature but certain influence at medium temperature arrange.Tert-butanol/n-heptane mixture is not sensitive to the pressure.The chemical analysis indicates that butanol isomers also present the NTC behavior because of the low temperature reactivity radicals pool produced by n-heptane.Reaction fluxes analysis shows that the n-heptane addition has little impact on the reaction path.Sensitivity analysis shows that for the pure n-butanol,2-butanol and iso-butanol fuel,H-abstraction from the?-carbon plays the dominant role in the reactions having the inhibiting effect on the low-temperature branching,while the H-abstraction from the?-carbon can promote the ignition;for tert-butanol/n-heptane mixtures,reaction R16.H2O2(+M)=OH+OH(+M)plays the leading role.For n-butanol/n-heptane,iso-butanol/n-heptane mixtures,the major promoting reactions include some H-abstraction from n-heptane and OH branching reactions,the influence of H-abstraction from?-carbon is weaken;For 2-butanol/n-heptane,tert-butanol/n-heptane mixtures,R16 plays an absolutely dominant role,while the major inhibiting reactions add some elementary reactions of small radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号