首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Voloshinov VB  Gupta N 《Applied optics》2006,45(13):3127-3135
Results of an investigation of acousto-optic (AO) cells using single crystals of magnesium fluoride (MgF2) are presented. Two acousto-optic tunable filter (AOTF) cells for imaging application have been designed and tested in the visible and ultraviolet (UV) regions of the spectrum from 190 to 490 nm. The two imaging filters were developed by using the wide-angle AO interaction geometry in the (010) and (11 0) planes of the crystal. These filters were used to obtain spectral images at the shortest wavelengths achieved so far. Advantages and drawbacks of this crystal are discussed and photoelastic, acoustic, and AO properties of MgF2 are examined. The investigation confirmed that MgF2-based AOTF cells can be used in the deep UV region up to 110 nm.  相似文献   

2.
Dispersion of femtosecond laser pulses propagating in Ar, He, Kr, N(2), Ne, Xe, and their mixtures is measured by spectrally and spatially resolved interferometry. By varying the gas pressure in a 4.5 m long tube between 0.05 mbar and ambient pressure, the first, second, and third order phase derivatives of broadband laser pulses are determined at 800 nm under standard conditions. The dispersion of gases and gas mixtures obeys the Lorentz-Lorenz formula with an accuracy of 0.7%. Based on the measured pressure dependent dispersion values in the near infrared and the refractive indices available from the literature for the ultraviolet and visible, a pressure dependent Sellmeier-type formula is fitted for each gas. These common form, two-term dispersion equations provide an accuracy between 4.1x10(-9) (Ne) and 4.3x10(-7) (Xe) for the refractive indices, from UV to near IR.  相似文献   

3.
We have constructed a broadband ultrafast time-resolved infrared (TRIR) spectrometer and incorporated it into our existing time-resolved spectroscopy apparatus, thus creating a single instrument capable of performing the complementary techniques of femto-/picosecond time-resolved resonance Raman (TR3), fluorescence, and UV/visible/infrared transient absorption spectroscopy. The TRIR spectrometer employs broadband (150 fs, approximately 150 cm(-1) FWHM) mid-infrared probe and reference pulses (generated by difference frequency mixing of near-infrared pulses in type I AgGaS2), which are dispersed over two 64-element linear infrared array detectors (HgCdTe). These are coupled via custom-built data acquisition electronics to a personal computer for data processing. This data acquisition system performs signal handling on a shot-by-shot basis at the 1 kHz repetition rate of the pulsed laser system. The combination of real-time signal processing and the ability to normalize each probe and reference pulse has enabled us to achieve a high sensitivity on the order of deltaOD approximately 10(-4) - 10(-5) with 1 min of acquisition time. We present preliminary picosecond TRIR studies using this spectrometer and also demonstrate how a combination of TRIR and TR3 spectroscopy can provide key information for the full elucidation of a photochemical process.  相似文献   

4.
Murata T  Ishizawa H  Tanaka A 《Applied optics》2008,47(13):C246-C250
We have successfully developed a process to form high quality MgF(2) thin films with ultralow refractive indices from autoclaved sols prepared from magnesium acetate and hydrofluoric acid. And we have confirmed that our porous MgF(2) coatings have not only high transmittance in the UV region but also high uniformity of film thickness. They can be uniformly formed on phiv 300 mm substrates as a single coating and as a hybrid coating with sublayers formed by physical vapor deposition. They are expected to be applied to various optics that need high transmittance in the UV region.  相似文献   

5.
以10MgF_2-20CaF_2-10SrF_2-10BaF_2-15YF_3-35AlF_3(摩尔百分数)氟铝酸盐玻璃为基本组成,在玻璃中引入不同含量的ZrF_4,同时对其它组成进行适当调整,制得了厚度8mm无可见析晶的氟化物玻璃。利用差热分析(DTA)技术研究了ZrF_4对玻璃形成能力和玻璃析晶动力学的影响,结果表明,少量的ZrF_4可以提高玻璃的抗失透能力,过量的ZrF_4会降低玻璃形成能力;ZrF_4的最佳含量范围为7.3~11.4mol%。根据测得的玻璃的红外透过光谱显示,该玻璃具有良好的透红外光性能。  相似文献   

6.
We report on thin-film photodetectors optimized for detecting the vacuum UV and rejection of the visible spectrum of electromagnetic radiation. The devices are made of hydrogenated amorphous silicon and silicon carbide on a glass substrate. At room temperature the photodetectors exhibit quantum efficiencies of 52% at lambda = 58.4 nm, 1% at lambda = 400 nm, and 0.1% at lambda = 650 nm. The response time for UV pulses from an N(2) laser gives signals of 6-mus full width at half-maximum and 500-ns rise time.  相似文献   

7.
Wang H  Wong KS  Deng D  Xu Z  Wong GK  Zhang J 《Applied optics》1997,36(9):1889-1893
We demonstrate optical parametric generation and amplification of femtosecond pulses in the entire visible range using type-I phase-matched beta-barium borate and lithium triborate crystals pumped by the frequency-doubled output of a Ti:sapphire regenerative amplifier at 395 nm. The output is tunable from 470 to 770 nm with a pulse width of ~170 fs at a repetition rate of 1 kHz and a maximum output energy of ~1.1 muJ/pulse. The visible optical parametric amplifier output was then frequency doubled and sum frequency mixed with the fundamental output of Ti:sapphire at 790 nm to produce UV pulses with a conversion efficiency of greater than 25%. The second harmonic generated UV pulses are tunable from 240 to 380 nm with a maximum pulse energy of ~260 nJ/pulse.  相似文献   

8.
In contrast to traditional semiconductors, conjugated polymers provide ease of processing, low cost, physical flexibility and large area coverage. These active optoelectronic materials produce and harvest light efficiently in the visible spectrum. The same functions are required in the infrared for telecommunications (1,300-1,600 nm), thermal imaging (1,500 nm and beyond), biological imaging (transparent tissue windows at 800 nm and 1,100 nm), thermal photovoltaics (>1,900 nm), and solar cells (800-2,000 nm). Photoconductive polymer devices have yet to demonstrate sensitivity beyond approximately 800 nm (refs 2,3). Sensitizing conjugated polymers with infrared-active nanocrystal quantum dots provides a spectrally tunable means of accessing the infrared while maintaining the advantageous properties of polymers. Here we use such a nanocomposite approach in which PbS nanocrystals tuned by the quantum size effect sensitize the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) into the infrared. We achieve, in a solution-processed device and with sensitivity far beyond 800 nm, harvesting of infrared-photogenerated carriers and the demonstration of an infrared photovoltaic effect. We also make use of the wavelength tunability afforded by the nanocrystals to show photocurrent spectra tailored to three different regions of the infrared spectrum.  相似文献   

9.
ITO/MgF2复合薄膜既具有较好的表面导电性能又具有较高的透过率,可应用于空间太阳电池玻璃盖板表面。文章主要对ITO/MgF2复合薄膜中表层的超薄ITO薄膜进行了研究。利用TFCalc软件模拟了ITO薄膜厚度对ITO/MgF2复合薄膜光学性能的影响,根据模拟结果采用电子束蒸发法在衬底上依次沉积MgF2薄膜和氧化铟锡(ITO)薄膜,研究了ITO薄膜工艺参数(沉积速率、沉积温度和工作气压)和ITO薄膜厚度对ITO/MgF2复合薄膜光电性能及微观结构的影响。当ITO薄膜沉积速率为0.05nm/s、沉积温度为400℃、工作气压为2.3×10~(-2) Pa、厚度为10nm时,表层ITO薄膜基本连续,其方块电阻(1.94kΩ/)已符合设计需求,ITO/MgF2复合薄膜在可见光区间(400~800nm)的平均透过率达到89.00%。  相似文献   

10.
We report the feasibility of nanosecond laser patterning of ZnO layer in CIGS-based solar cells. Patterning the ZnO layer on top of the entire solar cell structure (i.e. substrate configuration), as well as scribing the transparent conducting oxide layer on glass substrate (i.e. superstrate configuration) was studied at frequency doubled and quadrupled Nd:YAG wavelengths. We found that the 100 nm ZnO/glass structure can easily be patterned by both wavelengths, while for the 1 μm thick layer better results were achieved with UV pulses. In the substrate configuration patterning with the visible laser permits controllable cutting, while even mild UV processing causes severe damage to the underlying CIGS layer.  相似文献   

11.
Calixarenes are synthetic macrocyclic compounds, described as "molecular baskets" as they possess high ionophoric selectivity and form inclusion complexes with many important ionic guests. In our initial work, hexameric and tetrameric tert-butylcalixarenes, unfunctionalized at the lower rim, are shown to be separable on a diol column using supercritical fluid chromatography with methanol/chloroform-modified CO(2) as mobile phase. The variation in capacity factors for these calixarenes was studied as a function of modifier composition. However, the solubility of these molecular baskets in unmodified supercritical CO(2) is enhanced by fluorination at the upper rim. For example, when p-allylcalix[4]arene is derivatized by a thiol-ene addition reaction with heptadecafluorodecanethiol, CF(3)(CF(2))(7)(CH(2))(2)SH, a solubility of >0.12 mol L(-)(1) in supercritical CO(2) is measured for the p-heptadecafluorodecylthio-n-propylcalix[4]arene at 60 °C and 200 atm. However, subsequent lower rim functionalization to form the tetrahydroxamate derivative, while reducing the solubility, allows supercritical fluid extraction of Fe(III) by the fluorinated calix[4]arene ligands to be studied as a function of temperature and pressure and monitored using UV/visible and atomic absorption spectrometry. In particular, the visible absorption spectra obtained for the extracted Fe(III)-calix[4]arene tetrahydroxamate complex, collected in dimethyl sulfoxide, are indicative of octahedral Fe(III) complexation in a manner similar to that displayed by water-soluble siderophores. Studies on the efficiency and selectivity of Fe(III) extraction are also reported.  相似文献   

12.
《Optical Materials》2005,27(2):273-277
We report on preparation and characterization of GeO2/methyltrimethoxysilane hybrid thin films processed by the sol–gel spin coating technique. Acid catalyzed solutions of methyltrimethoxysilane mixed with germanium isopropoxide have been used as precursors for the hybrid materials. The optical properties of the thin films, including refractive index, thickness, and transparency as well as structural characterization, have been studied by using a prism coupling technique, atomic force microscopy, thermal gravimetric analysis, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. The results indicate that a crack-free, low absorption, and high transparency in the visible range optical films with a thickness of about 1.3 μm could be obtained by a single spin-coating process and at low heat treatment temperature. A strong UV absorption region at short wavelength ∼200 nm, accompanied with a shoulder peaked at ∼240 nm, due to the neutral oxygen monovacancies defects, has also been identified.  相似文献   

13.
Liu MC  Lee CC  Kaneko M  Nakahira K  Takano Y 《Applied optics》2006,45(7):1368-1374
MgF2 and GdF3 materials, used for a single-layer coating at 193 nm, are deposited by a resistive-heating boat at specific substrate temperatures. Optical characteristics (transmittance, refractive index, extinction coefficient, and optical loss) and microstructures (morphology and crystalline structure) are investigated and discussed. Furthermore, MgF2 is used as a low-index material, and GdF3 is used as a high-index material for multilayer coatings. Reflectance, stress, and the laser-induced damage threshold (LIDT) are studied. It is shown that MgF2 and GdF3 thin films, deposited on the substrate at a temperature of 300 degrees C, obtain good quality thin films with high transmittance and little optical loss at 193 nm. For multilayer coatings, the stress mainly comes from MgF2, and the absorption comes from GdF3. Among those coatings, the sixteen-layer design, sub/(1.4L 0.6H)8/air, shows the largest LIDT.  相似文献   

14.
New 3-layer near-infrared reflective glasses were prepared by coating clear float soda-lime glass with nanostructured TiO2 and SiO2 films using a dip coating technique. Reflective interference filters at NIR region (800–1000 nm) were designed by simulation and prepared onto 4 mm clear glass. Optical, microstructural and mechanical properties were determined for the coated glasses. 3-layer sol–gel glasses show high visible transmittance >70% combined with high solar reflectance about 30% (with reflectivity up to 60% at region from 800 to 950 nm) and high UV blockage (transmittance <35%). Due to good abrasion resistance of the filters, application for monolithic windows in automotive and architectural areas is promising.  相似文献   

15.
Ion-beam sputtering (IBS) and evaporation are the two deposition techniques that have been used to deposit coatings of Al protected with MgF(2) with high reflectance in the vacuum ultraviolet down to 115 nm. Evaporation deposited (ED) Al protected with IBS MgF(2) resulted in a larger (smaller) reflectance below (above) 125 nm than the well-known all-evaporated coatings. A similar comparison is obtained when the Al film is deposited by IBS instead of evaporation. The lower reflectance of the coatings protected with IBS versus ED MgF(2) above 125 nm is because of larger absorption of the former. Both nonprotected IBS Al, as well as IBS Al protected with ED MgF(2), resulted in a band of reflectance loss that was peaked at 127 and 157 nm, respectively. This result was attributed to the excitation of surface plasmons due to the enhancement of surface roughness with large spatial wave vectors in the sputter deposition. This reflectance loss for IBS Al protected with MgF(2) is small at the short (lambda~120 nm) and long (lambda<350 nm) wavelengths investigated. IBS Al protected with ED MgF(2) is thus a promising coating for these two spectral regions. Coatings protected with IBS MgF(2) resulted in a reflectance as high as coatings protected with ED MgF(2) at wavelengths longer than 550 nm, whereas the former had a lower reflectance below this wavelength.  相似文献   

16.
Vanadium dioxide/titanium nitride (VO2/TiN) smart coatings are prepared by hybridizing thermochromic VO2 with plasmonic TiN nanoparticles. The VO2/TiN coatings can control infrared (IR) radiation dynamically in accordance with the ambient temperature and illumination intensity. It blocks IR light under strong illumination at 28 °C but is IR transparent under weak irradiation conditions or at a low temperature of 20 °C. The VO2/TiN coatings exhibit a good integral visible transmittance of up to 51% and excellent IR switching efficiency of 48% at 2000 nm. These unique advantages make VO2/TiN promising as smart energy‐saving windows.  相似文献   

17.
Semitransparent (ST) photovoltaics (PVs) with selective absorption in the UV or/and near‐infrared (NIR) range(s) and reduced energy losses, are critical for high‐efficiency solar‐window applications. Here, a high‐performance tandem ST‐PV with selected absorption in the desirable regions of the solar spectrum is demonstrated. An ultralarge‐bandgap perovskite film (FAPbBr2.43Cl0.57, Eg ≈ 2.36 eV) is first developed to fulfil efficient selective absorption in the UV region. After optimization, the corresponding ST single junction (SJ) PV exhibits an averaged transmittance (AVT) of ≈68% and an efficiency of ≈7.5%. By sequentially reducing the visible absorbing component in a low‐bandgap organic bulk‐heterojunction layer, an ST‐PV with selective absorption in the NIR is achieved with a power conversion efficiency (PCE) of 5.9% and a high AVT of 62%. The energy loss associated with the SJ ST‐PVs is further reduced with a tandem architecture, which affords a high PCE of 10.7%, an AVT of 52.91%, and a light utilization efficiency up to 5.66%. These results represent the best balance of AVT and PCE among all ST‐PVs reported so far, and this design should pave the road for solar windows of high performance.  相似文献   

18.
Precise laser surgery is possible with laser pulses at wavelengths that are strongly absorbed at the surface of tissue. However, pulses at these wavelengths (far UV, far infrared) are not compatible with fiber-optic transmission, making endoscopic surgical procedures inside the body difficult. We use evanescent optical waves to demonstrate an alternative for confining energy near the tissue surface. Precise, superficial tissue ablation is achieved with evanescent waves generated at a sapphire-tissue interface by a free-electron laser, where the ablation depth may be varied. A new class of precise, controlled laser surgical tools may be achieved in this novel approach for use in endoscopic procedures. Electromagnetic theory governing evanescent-wave tissue ablation is presented.  相似文献   

19.
We realized metal fluoride coatings with a high packing density and a low extinction coefficient by plasma (ion)-assisted deposition. The densification can be performed by different types of plasma sources, e.g., by a Leybold LION source and a Leybold APSpro, respectively. But the as-deposited coatings show a characteristic absorption behavior, whereas the absorption losses can be reduced in a postdeposition UV treatment step. We show experimental results of the plasma-assisted metal fluorides before and after the UV treatment and present a new model that allows us to describe and calculate the characteristic absorption losses of LaF3, MgF2, and AlF3.  相似文献   

20.
Keffer CE  Torr MR  Zukic M  Spann JF  Torr DG  Kim J 《Applied optics》1994,33(25):6041-6045
Advances in vacuum ultraviolet thin-film filter technology have been made through the use of filter designs with multilayers of materials such as Al(2)O(3), BaF(2), CaF(2), HfO(2), LaF(3), MgF(2), and SiO(2). Our immediate application for these filters will be in an imaging system to be flown on a satellite where a 2 × 9 R(E) orbit will expose the instrument to approximately 250 krad of radiation. Because to our knowledge no previous studies have been made on the potential radiation damage of these materials in the thin-film format, we report on such an assessment here. Transmittances and reflectances of BaF(2), CaF(2), HfO(2), MgF(2), and SiO(2) thin films on MgF(2) substrates, Al(2)O(3) thin films on fused-silica substrates, uncoated fused silica and MgF(2), and four multilayer filters made from these materials were measured from 120 to 180 nm beforeand after irradiation by 250 krad from a (60)Co gamma radiation source. No radiation-induced losses in transmittance or reflectance occurred in this wavelength range. Additional postradiation measurements from 160 to 300 nm indicates 2-5% radiation-induced absorption near 260 nm in some of the samples with MgF(2) substrates. From these measurements we conclude that far-ultraviolet filters made from the materials tested should experience less than 5% change from exposure to up to 250 krad of high-energy radiation in space applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号