首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Gordon D. Airey 《Fuel》2003,82(14):1709-1719
The use of polymers for the modification of bitumen in road paving applications has been growing rapidly over the last decade as government authorities and paving contractors seek to improve road life in the face of increased traffic. Currently, the most commonly used polymer for bitumen modification is the elastomer styrene butadiene styrene (SBS) followed by other polymers such as styrene butadiene rubber, ethylene vinyl acetate and polyethylene. This paper describes the polymer modification of two penetration grade bitumens with SBS. Six polymer modified bitumens (PMBs) were produced by mixing the bitumens from two crude oil sources with a linear SBS copolymer at three polymer contents. The rheological characteristics of the SBS PMBs were analysed by means of conventional as well as dynamic mechanical analysis using a dynamic shear rheometer (DSR). The results of the investigation indicate that the degree of SBS modification is a function of bitumen source, bitumen-polymer compatibility and polymer concentration, with the higher polymer concentrations in a high aromatic content bitumen producing a highly elastic network which increases the viscosity, complex modulus and elastic response of the PMB, particularly at high service temperatures. However, ageing of the SBS PMBs tends to result in a reduction of the molecular size of the SBS copolymer with a decrease in the elastic response of the modified road bitumen.  相似文献   

2.
In this paper, the viscous flow behaviour of Vacuum Gas Oil (VGO) with different fractions (0–10% wt.) of Low Density Polyethylene (LDPE) under dynamic shear has been investigated. Viscosimetry measurements of the blends at temperatures between 333 and 433 K using a BOHLIN Controlled Stress Rheometer, as well as compatibility studies using Differential Scanning Calorimetry (DSC) were carried out. The effects of the variation of the blends polymer content on the activation energy of flow has also been investigated. The results obtained reveal that the blends show Newtonian flow behaviour at higher temperatures for all polymer concentrations studied, while at lower temperatures and at higher polymer concentrations, they show non-Newtonian shear-thinning behaviour. Furthermore, at lower temperatures, these behaviours are more pronounced at lower shear rates than at higher shear rates. As the polymer content in the blend is increased, the shear viscosity increases, the flow behaviour index decreases, and the application of an Arrhenius type equation shows an increase in the activation energy of flow at the lower shear rates.  相似文献   

3.
陈中华  冯润财 《弹性体》2008,18(3):28-32
用毛细管流变仪测定并研究了热塑性丁苯三嵌段共聚物(SBS)/蒙脱土纳米复合材料的熔体的稳态剪切流变行为,研究结果表明:温度和压力一定的条件下,加入一定量的改性蒙脱土可以降低熔体的粘度;在较低的剪切速率下,即出现剪切变稀现象;在高剪切速率下,粘度对剪切速率的敏感性是降低的,改性蒙脱土加入量对熔体的剪切粘度影响较小,主要是由基体材料所决定的;随温度的升高熔体粘度对剪切速率的敏感性是降低的。采用转矩流变仪对材料的加工性能进行研究,发现复合材料的加工性能基本上保持了纯SBS的加工性能。  相似文献   

4.
Rheological characterization of two types of road bitumens, conventional and polymer‐modified, has been examined in the temperature range between 20°C and 140°C. Tests were carried out before and after ageing following a thin‐film oven test. Polymer‐modified bitumens exhibit non‐Newtonian behaviour up to the 120°C due to a complex secondary structure formed by added polymers. For conventional bitumens, Newtonian behaviour was observed above 60°C. Special attention was paid to measurements and to analysis of the dynamic data of oscillatory shear. The mechanical spectra in a wide frequency range have been obtained using the WLF time‐temperature superposition principle. The analysis of viscoelastic data clearly showed the differences between the two types of bitumen. Conventional bitumens were more sensitive to temperature and to the ageing effects. For polymer modified bitumens, the elastic contribution to viscoelastic response was more pronounced, and independent of temperature and ageing.  相似文献   

5.
Abstract

Nanocomposites of extrusion-type Surlyn ionomer and intercalated sodium-type montmorillonite were compounded on a KO-kneader and measured on a modified capillary rheometer for strain rate versus pressure dependencies of shear and elongational viscosities for various clay concentrations. The modified White–Metzner model was employed to simultaneously fit the viscosity data and determine pressure coefficients; these have been found to decrease with the loading level of the nanocomposites. Increasing relaxation times with rising filler content indicate earlier onset of non-Newtonian behaviour under shearing, and hardening at strain.  相似文献   

6.
This paper presents an investigation of artificial aging of polymer modified binders, prepared from three base bitumens and six polymers. Aging of the binders was performed using the Thin Film Oven Test (TFOT), the Rolling Thin Film Oven Test (RTFOT), and modified RTFOT (MRTFOT). The binders were characterized by means of infrared spectroscopy, different types of chromatography, and dynamic mechanical analysis. It was found that the effect of aging on the chemistry and rheology of the modified binders was influenced by the nature of the base bitumens and was strongly dependent on the characteristics of the polymers. For styrene–butadiene–styrene (SBS) and styrene–ethylene–butylene–styrene (SEBS) modified binders, aging decreased the complex modulus and increased the phase angle. Aging also increased the temperature susceptibility of these modified binders. The rheological changes of SBS modified bitumens were attributed to polymer degradation and bitumen oxidation. However, for SEBS modified bitumens, the mechanisms of aging are unclear. In the case of ethylene vinyl acetate (EVA) and ethylene butyl acrylate (EBA) modified binders, the process of aging increased the complex modulus and elastic response (decreased phase angle), and reduced temperature susceptibility. These changes were mainly due to the oxidative hardening of the base bitumens. The study also showed statistically significant correlation between TFOT, RTFOT, and MRTFOT. However, no definite conclusions could be drawn regarding the difference in severity of aging between these methods. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1811–1824, 2000  相似文献   

7.
The rheological behaviour of aqueous solutions of two commercial anionic hydrophobically modified alkali-swellable emulsions (HASE), Acrysol TT615 and RM5, was studied. These polymeric systems, initially in the form of low-viscosity latices at low pH, tend to swell and increase their viscosity when neutralised with base. The steady-shear and dynamic properties of these polymers were measured over a wide range of concentration, at constant pH=9 and temperature of 20°C. The intrinsic and zero-shear viscosities were used to identify the concentration regimes of the polymer solutions. In the case of Acrysol TT615, the solution exhibited shear-thinning characteristics at a concentration above 500 ppm. The Carreau model described well the viscosity function of the 1000 and 2000 ppm solutions. Considerable viscosity enhancement and a change in the flow curve profile were observed at concentrations above 2000 ppm. At high polymer concentration. the zero-shear viscosity was not detectable, and the power law model was adequate to characterize these solutions. By contrast, the RM5 solutions exhibited nearly Newtonian behaviour over the whole concentration range considered. Elasticity measured from the first normal stress difference indicated that Acrysol TT615 was more elastic than Acrysol RM5. Dynamic measurements revealed that both storage (G′) and loss (G″) moduli increased with polymer concentration. In the higher frequency and concentration regions, G′ > G″ was obseved for TT615, whereas G″ > G′ for RM5.  相似文献   

8.
Clay/styrene–butadiene–styrene (SBS) modified bitumen composites were prepared by melt blending with different contents of sodium montmorillonite (Na‐MMT) and organophilic montmorillonite (OMMT). The structures of clay/SBS modified bitumen composites were characterized by XRD. The XRD results showed that Na‐MMT/SBS modified bitumen composites may form an intercalated structure, whereas the OMMT/SBS modified bitumen composites may form an exfoliated structure. Effects of MMT on physical properties, dynamic rheological behaviors, and aging properties of SBS modified bitumen were investigated. The addition of Na‐MMT and OMMT increases both the softening point and viscosity of SBS modified bitumens and the clay/SBS modified bitumens exhibited higher complex modulus, lower phase angle. The high‐temperature storage stability can also be improved by clay with a proper amount added. Furthermore, clay/SBS modified bitumen composites showed better resistance to aging than SBS modified bitumen, which was ascribed to barrier of the intercalated or exfoliated structure to oxygen, reducing efficiently the oxidation of bitumen, and the degradation of SBS. POLYM. ENG. SCI., 47:1289–1295, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
Melt rheological studies of nylon 6/polyethylene terephthalate (PETP) blends (PETP content varying from 10 to 50%) were carried out using capillary rheometer in the shear rate range of 58 s?1 to 1.15 · 103 s?1. With increasing PETP content in the blend a decrease of the melt viscosity as well as non-Newtonian behaviour was observed. The model equation developed by Uemura and Takayanagi for viscoelastic melt blends has been used to understand the state of dispersion and morphology of a nylon 6/PETP blend system. Further, an inverse relationship between polymer melt viscosity (η) and elastic modulus (E') of fibres was observed.  相似文献   

10.
煤系高岭土料浆的粘度及影响因素   总被引:5,自引:1,他引:4  
煤系高岭土料浆的浓分散体系为非牛顿流体,具有剪切变稀的特性. 阴离子型分散剂聚丙烯酸钠可吸附于煤系高岭土颗粒的表面,改变其表面电势,增加颗粒间的排斥能,从而起到很好的分散作用. 通过实验,研究了固相浓度、分散剂用量、粒径大小等因素对煤系高岭土料浆粘度的影响. 固相浓度增大、粒径减小时,料浆的粘度增大;分散剂可使料浆粘度降低,当最佳用量为0.3%左右,在高剪切速率(729 s-1)下,固相浓度由30%(w)提高到70%(w),料浆的粘度分别为0.004和0.020 Pa×s.  相似文献   

11.
This study focuses on the phase behavior, rheology, and interactions of polymer latex particles and a hydrophobically modified ethoxylated urethane (HEUR) associative thickener in water. At constant 0.25 latex particle volume fraction, increasing HEUR caused stable, followed by phase separated (syneresis), and stable mixtures as HEUR concentration increased from 0% to 2.0% (by weight) in the latex-thickener aqueous mixture. The mixtures that underwent syneresis were flocculated. The relationship between the flocculation behavior and the composition of the latex-HEUR mixtures is consistent with previous work reported by other investigators. However, detailed rheological data on systems like these that have undergone syneresis have not been reported. This paper presents detailed viscosity vs shear rate data and correlates viscosity trends with the both flocculation and syneresis behavior. The stable latex-HEUR mixtures at low HEUR levels show Newtonian or shear-thinning viscosity with well-defined low-shear Newtonian plateaus. As HEUR level is increased to levels at which syneresis is observed, erratic rheological profiles with shear thinning as well as thickening are observed. This type of shear thickening has been attributed to bridging flocculation by other investigators. When HEUR level is further increased to levels at which no syneresis is observed, low-shear Newtonian plateaus re-appeared, albeit at higher viscosities. Detailed analysis of syneresis and shear-thickening behavior of a latex-HEUR mixture containing 0.5% (by weight) HEUR showed two shear-thickening regions, one between 0.1 and 0.5 s?1 shear rate range and another between 30 and 100 s?1 shear rate range. Molecular weight distribution (MWD) of the HEUR thickener indicates that the two shear-thickening regions are related to the bi-modal nature of the thickener’s MWD.  相似文献   

12.
A method for accelerating bubble removal in non-Newtonian liquids by forced stirring is proposed. Numerical simulations based on an Eulerian-Eulerian multiphase model are performed to test its feasibility for various liquids including shear-thickening, shear-thinning, and Newtonian ones. Effects of the rotating speed of the stirrer and rheological properties of liquids on the degassing efficiency are evaluated, and the influencing mechanisms are analyzed in detail. The feasible regions of degassing in shear-thinning liquids covering a certain range of viscosities are determined, from which one can easily decide the optimal rotating speed given the viscosity of liquids. The results provide a new idea of efficient degassing in shear-thinning liquids for researchers and engineers.  相似文献   

13.
Steady shear viscosities and dynamic moduli of polymer composites, consisting of combinations of crosslinked beads and matrices of polystyrene (PS) and polymethacrylates (PMA), are measured in a cone and plate rheometer. Viscosities and moduli were very sensitive to chemical composition. Crosslinked beads of identical composition to the matrix exhibited the lowest viscosity enhancements at low shear rates and the lowest moduli in dynamic mechanical analysis. The effects of bead concentration on rheological behavior were compared for PS and PMMA beads in a PMMA matrix. PMMA beads produce small effects, whereas PS beads yield highly non-Newtonian systems in PMMA, showing a yield stress of 1100 Pa at 30 wt% filler loading and dynamic moduli independent of frequency. We suggest that rheological behavior reflects the state of dispersion of beads in the matrix. Beads identical in composition to the matrix yield uniform dispersions. We propose that uniform and stable bead dispersions exhibit the lowest viscosity and moduli. Beads that cluster in the matrix, such as PS beads in PMMA, exhibit highly non-Newtonian behavior.  相似文献   

14.
The paper describes the rheological behaviour of nanocomposite latexes based on butylacrylate–co-methylmethacrylate–co-acrylamide terpolymers including various commercial nanoclays obtained via in situ emulsion polymerization. Rotational, oscillatory, emulsion stability and thixotropy tests (recovery) were performed to evaluate the influence of clay incorporation, type of clay and also emulsifier content in the composition of these nanomaterials. It was observed that the viscosities of the nanocomposite latexes were increased by clay incorporation at low shear rates, while a shear thinning effect was observed at higher shear rates. Oscillatory tests indicated a dominant elastic behaviour and high physical stabilities for all the nanocomposites. The hydrophobic character of the clay and emulsifier content also influenced the viscosity and dynamic modulus of the emulsions.  相似文献   

15.
Four styrene–butadiene–styrene(SBS) modified bitumens had been prepared by a base bitumen, a crosslinking agent and four SBS copolymers which differ in styrene blocks content and molecular configuration (radial or linear) under the same experimental conditions. Conventional properties, morphology, thermal behavior and microstructure were investigated by means of conventional tests, fluorescence microscopy, differential scanning calorimetry (DSC), and Fourier transform infrared (FT‐IR) spectroscopy. In terms of linear SBS polymers, the SBS molecule with the styrene content of 30% has a perfect dispersion and complete stretching in bitumen matrix, and in this case, the conventional properties and thermal stability of bitumen are enhanced substantially. However, the star SBS polymer due to long branched chains forming the preferable steric hindrance to enhance the intensity of base bitumen, plays a more important role in improving the conventional properties of base bitumen than linear SBS polymers. Furthermore, the FT‐IR spectra indicate that, the main bands assignations of four modified bitumens are identical and the significant variation is the peak intensity. And a noncomplete crosslinking reaction happens between the bitumen and each SBS polymer, which can efficiently prevent excessive cross‐linking from affecting the intrinsic bitumen characteristics. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40398.  相似文献   

16.
将3种不同的温拌剂添加到苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)/橡胶粉复合改性沥青中,并拌和相应的应力吸收层混合料成型后制得复合式试件,通过黏度试验评价了不同温拌剂对SBS/橡胶粉复合改性沥青降黏效果的影响,通过层间拉拔试验、剪切试验和剪切疲劳试验分析了温拌SBS/橡胶粉复合改性沥青混合料应力吸收层层间性能的变化特性。结果表明,温拌剂的降黏效果由优到劣的顺序依次为:Evotherm-3 G、Sasobit-LM、Aspha-min,温拌沥青技术并不影响常温环境下复合改性沥青应力吸收层层间的黏结性能和抗剪性能;高温及水浴环境会导致不同应力吸收层层间力学强度明显降低,且不同温拌剂复合改性沥青应力吸收层的层间拉拔强度和抗剪强度存在差异,其中温拌剂Evotherm-3 G和Sasobit-LM能够增强应力吸收层层间的力学强度;相对于SBS/橡胶粉复合改性沥青的应力吸收层,添加温拌剂会缩短应力吸收层混合料的层间剪切疲劳寿命,Sasobit、Aspha-min和Evotherm-3 G温拌复合改性沥青应力吸收层的层间剪切疲劳寿命分别缩短了约10.0%、17.4%和2.7%。  相似文献   

17.
The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite) nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given shear rate is time dependent, i.e. the fluid is thixotropic. Finally, using strain sweep and frequency sweep tests, the storage modulus G'', loss modulus G″ and damping factor were determined as a function of the frequency showing viscoelastic behaviour for all samples.  相似文献   

18.
In this study, the performance and modification mechanism of EVA (ethylene‐vinyl‐acetate) modified (EM), EVA/SBS (Styrene‐Butadiene‐Styrene) modified (ESM), and EVA/SBS/sulfur modified (ESSM) bitumens were evaluated. The physical, rheological, morphological, and structural properties were determined before and after aging, and compared with those of base bitumen. These properties were evaluation using conventional physical methods, Fourier transform infrared spectrometer, optical microscopy, dynamic shear rheometer, and bending beam rheometer, respectively. The results showed that sulfur was useful in bitumen, EVA, and SBS modification by forming a vulcanized crosslinking polymer network. The vulcanization improved most of the physical properties of ESM bitumen, especially high‐ and low‐temperature performance, and toughness and tenacity (previously not evaluated in the literature). Meanwhile, vulcanization improved the compatibility between polymers and bitumen and increased the aging resistance of ESM bitumen. Vulcanization reactions took place without new functional groups being presented in the infrared spectrum. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44850.  相似文献   

19.
The viscous flow properties of polymer-thickened water-in-oil emulsions were measured using a coaxial cylinder viscometer. The emulsions were prepared using deionized water and polyisobutylene in oil solutions. Three different molecular weight polyisobutylenes (Vistanex MML-140, Vistanex MML-100, and Vistanex MML-80) were studied. The effects of polymer concentration and water (droplet) concentration on the flow properties were determined. The polymer concentration varied from 0 to 3.96% by weight based on the oil phase whereas the water concentration varied from 0 to 80% by volume (based on total emulsion volume). The polymer solutions behaved like non-Newtonian Ellis model fluids. At low water concentrations, the flow curves for emulsions were similar to their suspending medium (polymer solution). At high values of water concentration, emulsions clearly exhibited a yield stress. The yield stress increased with both water and polymer concentrations. The shear stress/shear rate data for the emulsions possessing a yield stress were described adequately by a modified Herschel-Bulkley model. A comparison was also made of the relative viscosities of emulsions having different polymer concentrations. The relative vis-cosities for polymer-thickened emulsions were found to be significantly lower than the corresponding values for emulsions without polymer. The correlation of relative viscosity/ concentration data is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
采用旋转流变仪研究了超高分子量聚乙烯(UHMWPE)凝胶的流变行为。通过动态应变扫描测定了UHMWPE凝胶的线性黏弹区;通过动态温度扫描、动态频率扫描和稳态速率扫描研究了温度、浓度、剪切速率对凝胶流变行为的影响。结果表明,浓度为2%~22%的UHMWPE凝胶的线性黏弹区对应的应变下限为2%,上限为40%,且温度对凝胶线性黏弹区的影响较大;浓度为6%的UHMWPE凝胶,在180℃时,弹性模量最大,凝胶内部的黏结性最强;UHMWPE凝胶熔体的黏度随扫描频率、剪切速率的升高而降低,呈现明显的剪切变稀行为,属于假塑性流体;剪切速率较高时,UHMWPE凝胶的黏度对温度的变化更敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号