首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study examines the influence of ventilation on chemical reactions among indoor pollutants. We have used a one compartment mass balance model to simulate unimolecular and bimolecular reactions occurring indoors. The initial modeling assumes steady-state conditions. However, at low air exchange rates, there may be insufficient time to achieve steady-state. Hence we have also modeled non steady-state scenarios. In the cases examined, the results demonstrate that the concentrations of products generated from reactions among indoor pollutants increase as the ventilation rate decreases. This is true for unimolecular and bimolecular reactions, regardless of whether the pollutants have indoor or outdoor sources. It is also true even when one of the pollutants has an outdoor concentration that displays large diurnal variations. We have supplemented the modeling studies with a series of experiments conducted in typical commercial offices. The reaction examined was that between ozone and limonene. The ozone was present as a consequence of outdoor-to-indoor transport while the limonene originated indoors. Results were obtained for low and high ventilation rates. Consistent with the modeling studies, the concentrations of monitored products were much larger at the lower ventilation rates (even though the ozone concentrations were lower). The potential for reactions among indoor pollutants to generate reactive and irritating products is an additional reason to maintain adequate ventilation in indoor environments.  相似文献   

2.
E. Darling  R. L. Corsi 《Indoor air》2017,27(3):658-669
Ozone reacts readily with many indoor materials, as well as with compounds in indoor air. These reactions lead to lower indoor than outdoor ozone concentrations when outdoor air is the major contributor to indoor ozone. However, the products of indoor ozone reactions may be irritating or harmful to building occupants. While active technologies exist to reduce indoor ozone concentrations (i.e, in‐duct filtration using activated carbon), they can be cost‐prohibitive for some and/or infeasible for dwellings that do not have heating, ventilating, and air‐conditioning systems. In this study, the potential for passive reduction of indoor ozone by two different clay‐based interior surface coatings was explored. These coatings were exposed to occupied residential indoor environments and tested bimonthly in environmental chambers for quantification of ozone reaction probabilities and reaction product emission rates over a 6‐month period. Results indicate that clay‐based coatings may be effective as passive removal materials, with relatively low by‐product emission rates that decay rapidly within 2 months.  相似文献   

3.
The use of indoor ozone generators as air purifiers has steadily increased over the past decade. Many ozone generators are marketed to consumers for their ability to eliminate odors and microbial agents and to improve health. In addition to the harmful effects of ozone, recent studies have shown that heterogeneous and homogeneous reactions between ozone and some unsaturated hydrocarbons can be an important source of indoor secondary pollutants, including free radicals, carbonyls, carboxylic acids, and fine particles. Experiments were conducted in one apartment and two detached single-family dwellings in Austin, TX, to assess the effects of an ozone generator on indoor secondary organic aerosol concentrations in actual residential settings. Ozone was generated using a commercial ozone generator marketed as an air purifier, and particle measurements were recorded before, during, and after the release of terpenes from a pine oil-based cleaning product. Particle number concentration, ozone concentration, and air exchange rate were measured during each experiment. Particle number and mass concentrations increased when both terpenes and ozone were present at elevated levels. Experimental results indicate that ozone generators in the presence of terpene sources facilitate the growth of indoor fine particles in residential indoor atmospheres. Human exposure to secondary organic particles can be reduced by minimizing the intentional release of ozone, particularly in the presence of terpene sources. PRACTICAL IMPLICATIONS: Past studies have shown that ozone-initiated indoor chemistry can lead to elevated concentrations of fine particulate matter, but have generally been completed in controlled laboratory environments and office buildings. We explored the effects of an explicit ozone generator marketed as an air purifier on the formation of secondary organic aerosol mass in actual residential indoor settings. Results indicate significant increases in number and mass concentrations for particles <0.7 microns in diameter, particularly when an ozone generator is used in the presence of a terpene source such as a pine oil-based cleaner. These results add evidence to the potentially harmful effects of ozone generation in residential environments.  相似文献   

4.
Ward M  Siegel JA  Corsi RL 《Indoor air》2005,15(2):127-134
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. PRACTICAL IMPLICATIONS: The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.  相似文献   

5.
M. S. Waring 《Indoor air》2014,24(4):376-389
Indoor secondary organic aerosol (SOA) formation may contribute to particle concentrations within residences, but little systematic work has investigated its magnitude or the determinants of its formation. This work uses a time‐averaged modeling approach to predict the indoor SOA mass formed in residences due to the oxidation of 66 reactive organic compounds by ozone or the hydroxyl radical, parameterizing SOA formation with the aerosol mass fraction. Other organic and inorganic aerosols owing to outdoor and indoor sources were also predicted. Model inputs were represented as distributions within a Monte Carlo analysis, so that result distributions and sensitivity of results to inputs could be quantified, using a dataset developed from the study of Relationships between Indoor, Outdoor and Personal Air and other sources. SOA comprised a large amount of indoor organic and total fine particles for a subset of the results (e.g., >47% of indoor organic and >30% of fine aerosol for 10% of the modeled cases), but was often a small fraction. The sensitivity analysis revealed that SOA formation is driven by high terpene emission rates (particularly by d‐limonene) and outdoor ozone, along with low air exchange and ozone and particle deposition rates.  相似文献   

6.
Recirculation of conditioned air is a common practice in regions with hot and humid climate. This is due to the need to reduce sensible and latent cooling loads in buildings. However, recirculating used indoor air may influence indoor air chemical reactions and products derived from the chemistry. Example of such products is secondary organic aerosols (SOA) derived from ozone initiated indoor chemistry. This present study was conducted using mass balance model to examine the impacts of four recirculation rates on ozone (of outdoor origin) and SOA derived from the ozone initiated indoor chemistry. At steady-states, it was observed that the higher the recirculation rate, the lower the ozone and SOA concentration for all modeled scenarios. At steady-state, outdoor to indoor transport of ozone, indoor ozone and SOA concentrations were found to increase with increasing outdoor ozone levels. Increase in ventilation rate was found to increase outdoor to indoor transport of ozone and steady-state indoor ozone concentration. However, higher ventilation rate resulted in lower SOA concentration at steady-state. Increasing ozone filtration efficiency of activated carbon (AC) filter was found to be effective in reducing indoor ozone and SOA concentrations. This study is relevant to building sustainability in terms of health and comfort of building occupants.  相似文献   

7.
Concentrations of 38 organic air pollutants including aromatic hydrocarbons (AHCs), carbonyl compounds (CCs), volatile organic halogenated compounds (VOHCs), and organophosphorus compounds (OPCs) were measured in indoor and outdoor air in an industrial city, Shimizu, Shizuoka Prefecture, Japan. Levels of pollutants tended to be higher indoors than outdoors in both summer and winter except for benzene, carbon tetrachloride, trichloroethylene, tetrachloroethylene, and dichlorvos (DDVP). This trend was especially pronounced for CCs such as formaldehyde and acetaldehyde. For the organic air pollutants, the concentrations of AHCs and VOHCs substantially increased in winter, but not those of CCs and OPCs; the trends were similar for both indoors and outdoors. We investigated possible indoor sources of pollutants statistically. Multiple regression analysis of corresponding indoor and outdoor concentrations and the responses to our questionnaire showed that indoor concentrations of certain AHCs were significantly affected by their outdoor concentrations and cigarette smoking. For formaldehyde, indoor concentrations were significantly affected by house age and the presence of carpet or pets. For p-dichlorobenzene (pDCB), the concentrations in bedroom trended to be higher than those in other indoors and outdoors, suggested that mothballs for clothes present in bedrooms are the principal indoor source of pDCB. We compared indoor and outdoor pollutant concentrations to acceptable risk limits for 11 organic air pollutants. In indoors without smoking samples, the geometric mean concentrations of benzene, formaldehyde, acetaldehyde, carbon tetrachloride, pDCB, and DDVP exceeded the equivalent concentration representing the upper bound of one-in-one-hundred-thousand (1x10(-5)) excess risk over a lifetime of exposure.  相似文献   

8.
Confined environments are indoor spaces in which the air is not renewed or very poorly renewed by fresh outdoor air (spacecraft, submarines, etc.). In these environments, indoor air quality (IAQ) is expected to be highly influenced by homogeneous and heterogeneous chemistry. This paper presents a representative example of the contribution of these two phenomena to the production of secondary gaseous pollutants indoors by analyzing the chemical degradation of isoprene. An indoor air quality model was developed in the Matlab environment to compute the concentrations of both organic and nonorganic gaseous species involved in this mechanism. Two kinds of initial conditions (concentrations of nitrogen oxides, ozone and isoprene) were considered for the simulations. The results show strong interactions between homogeneous and heterogeneous reactions. Especially, the integrated reaction rate (IRR) of the heterogeneous hydrolysis of nitrogen dioxide emerges very high. Demonstration of strong interactions between inorganic and organic chemistries is also made, the conversion between NO and NO2 being of central importance in the degradation cycle of isoprene. The type and amount of secondary products obtained are assessed. The results emphasize the strong influence of ozone and nitric oxide concentration levels indoors.  相似文献   

9.
Relationship between outdoor and indoor air quality in eight French schools   总被引:1,自引:0,他引:1  
In the frame of the French national research program PRIMEQUAL (inter-ministry program for better air quality in urban environments), measurements of outdoor and indoor pollution have been carried out in eight schools in La Rochelle (France) and its suburbs. The buildings were naturally ventilated by opening the windows, or mechanically ventilated, and showed various air permeabilities. Ozone, nitrogen oxides (NO and NO(2)), and airborne particle (particle counts within 15 size intervals ranging from 0.3 to 15 mum) concentrations were continuously monitored indoors and outdoors for two 2-week periods. The indoor humidity, temperature, CO(2) concentration (an indicator of occupancy), window openings and building permeability were also measured. The temporal profiles of indoor and outdoor concentrations show ozone and nitrogen oxides behave differently: NO and NO(2) indoor/outdoor concentration ratios (I/O) were found to vary in a range from 0.5 to 1, and from 0.88 to 1, respectively, but no correlation with building permeability was observed. On the contrary, I/O ratios of ozone vary in a range from 0 to 0.45 and seem to be strongly influenced by the building air-tightness: the more airtight the building envelope, the lower the ratio. Occupancy, through re-suspension of previously deposited particles and possible particle generation, strongly influences the indoor concentration level of airborne particles. However, this influence decreases with particle size, reflecting the way deposition velocities vary as a function of size. The influence of particle size on deposition and penetration across the building envelope is also discussed by analyzing the I/O ratios measured when the buildings were unoccupied, by comparing the indoor concentrations measured when the buildings were occupied and when they were not (O/U ratios), and by referring to previously published studies focussing on this topic. Except one case, I/O were found to vary in the range from 0.03 to 1.79. All O/U are greater than one and increase up to 100 with particle size. PRACTICAL IMPLICATIONS: Assessing children's total exposure requires the knowledge of outdoor and indoor air contaminant concentrations. The study presented here provides data on compared outdoor and indoor concentration levels in school buildings, as well as information on the parameters influencing the relationship between outdoor and indoor air quality. It may be used as a basis for estimating indoor concentrations from outdoor concentrations data, or as a first step in designing buildings sheltering children against atmospheric pollution.  相似文献   

10.
Waring MS  Siegel JA 《Indoor air》2011,21(4):267-276
Ion generators charge particles with a corona prior to their removal on collector plates or indoor surfaces and also emit ozone, which can react with terpenes to yield secondary organic aerosol, carbonyls, carboxylic acids, and free radicals. This study characterized the indoor air quality implications of operating an ion generator in a 27 m(3) residential room, with four different test room configurations. Two room configurations had carpet overlaying the original flooring of stained/sealed concrete, and for one configuration with and without carpet, a plug-in air freshener was used as a terpene source. Measurements included airborne sampling of particulate matter (0.015-20 μm), terpenes and C(1) -C(4) and C(6) -C(10) aldehydes, ozone concentrations, and air exchange rates. When the heating, ventilating, and air-conditioning system was not operating (room air exchange rate = ~0.5/h), the use of the ion generator in the presence of the air freshener led to a net increase in ultrafine particles (<0.1 μm). Also, increased concentrations of ozone were observed regardless of air freshener presence, as well as increases in formaldehyde and nonanal, albeit within measurement uncertainty in some cases. Thus, it may be prudent to limit ion generator use indoors until evidence of safety can be ascertained. PRACTICAL IMPLICATIONS: Portable ion generators are intended to clean the air of particles, but they may emit ozone as a byproduct of their operation, which has the potential to degrade indoor air quality. This study showed that under certain conditions in a residential room, the use of a portable ion generator can increase concentrations of ozone and, to a lesser degree, potentially aldehydes. Also, if operated in the presence of a plug-in air freshener that emits terpenes, its use can increase concentrations of secondary organic aerosol in the ultrafine size range.  相似文献   

11.
《Building and Environment》2002,37(3):241-255
The primary functions of mechanical ventilation systems include the delivery of outdoor air to the occupants, the removal of indoor contaminants and the maintenance of thermal comfort conditions in the occupied zones. Air exchange effectiveness can be employed to characterise the ventilation air mixing within a room. This paper presents our findings pertaining to air exchange effectiveness values in a seven-storey office building. Tracer gas analysis, based on concentration decay method, is employed to determine these values. The results indicate air flow patterns in the occupied zones which approximate “perfect mixing”. The measured concentration levels of indoor air pollutants are also found to be within reasonable limits.  相似文献   

12.
Reactions between ozone and indoor contaminants may influence human health and indoor air quality. The U.S. EPA Building Assessment Survey and Evaluation (BASE) study data were analyzed for associations between ambient ozone concentrations and building-related symptom (BRS) prevalence. Multiple logistic regression (MLR) models, adjusted for personal, workplace, and environmental variables, revealed positive relationships (P < 0.05) between ambient ozone concentrations and upper respiratory (UR), dry eyes, neurological and headache BRS (odds ratios ranged from 1.03 to 1.04 per 10 mug/m(3) increase in ambient ozone concentrations). Other BRS had marginally significant relationships with ambient ozone (P < 0.10). A linear dose-response in UR symptoms was observed with increasing ambient ozone (P = 0.03); most other symptoms showed similar but not statistically significant trends. Ambient ozone correlated with indoor concentrations of some aldehydes, a pattern suggesting the occurrence of indoor ozone chemistry. Coupled with the MLR ambient ozone-BRS analysis, this correlation is consistent with the hypothesis that ozone-initiated indoor reactions play an important role in indoor air quality and building occupant health. Replication with increased statistical power and with longitudinal data is needed. If the observed associations are confirmed as causal, ventilation system ozone removal technologies could reduce UR BRS prevalence when higher ambient ozone levels are present. PRACTICAL IMPLICATIONS: This paper provides strong statistical evidence that supports (but does not prove) the hypothesis that ozone entrained into buildings from the outdoor air is involved in increasing the frequency that occupants experience and a range of upper and lower respiratory, mucosal and neurological symptoms by as much as a factor of 2 when ambient ozone levels increase from those found in low-ozone regions to those typical of high-ozone regions. Although replication is needed, the implication is that reducing the amount of ozone entrained into building ventilation systems, either by ambient pollution reduction or engineered gas-phase filtration, may substantially reduce the prevalence of these symptoms experienced by occupants.  相似文献   

13.
This study conducted short-term assessments of perceived air quality (PAQ) for six different realistic concentrations of ozone and limonene, separately or together, in room air. The impact of filtration and the influence of the ozone generation method were also examined. The evaluations were made in four identical 40 m3 low-polluting test offices ventilated at 1.4 h(-1) or in two identical 30 m3 stainless-steel chambers ventilated at 1.9 h(-1). Concentrations of ozone, total volatile organic compounds and size-fractionated particles were continuously monitored in each experiment. The results indicate that, for each of the six conditions, the PAQ was poorer when ozone and limonene were present together compared with when only ozone or only limonene was present. In the test offices a correlation was observed between the number of secondary organic aerosols produced by a given ozone/limonene condition and the sensory pollution load for that condition. The particles themselves do not appear to be the primary causative agents, but instead are co-varying surrogates for sensory offending gas-phase species. PRACTICAL IMPLICATIONS: Although the health consequences of long-term exposures to the products of ozone-initiated indoor chemistry remain to be determined, we judge that the sensory offending nature of selected products provides an additional reason to limit indoor ozone levels. Devices that emit ozone at significant rates should not be used indoors. Ozone-filtration of make-up air should also be beneficial in mechanically ventilated buildings located in regions that repeatedly violate outdoor ozone standards. Additionally, the use of limonene containing products should be curtailed during periods when indoor ozone levels are elevated.  相似文献   

14.
Although almost all epidemiological studies of smaller airborne particles only consider outdoor concentrations, people in Central Europe actually spend most of their time indoors. Yet indoor pollutants such as organic gases, allergens and dust are known to play a prominent role, often affecting human health more than outdoor ones. The aim of this study was to ascertain how the indoor particle size distributions of submicron and ultrafine particles correlate with the outdoor concentrations in the absence of significant indoor sources. A typical indoor particle size distribution pattern has one or two modes. In the absence of significant indoor activities such as smoking, cooking etc., outdoor particles were found to be a very important source of indoor particles. The study shows that in the absence of significant indoor sources, the number of indoor concentrations of particles in this size range are clearly lower than the outdoor concentrations. This difference is greater, the higher the number of outdoor concentrations. However, the drop in concentration is not uniform, with the decrease in concentration of smaller particles exceeding that of larger ones. By contrast, the findings with larger particle sizes (diameter > 1 microm) exhibit rather linear concentration decreases. The non-uniform drop in the number of concentrations from outdoors to indoors in our measurements considering smaller particles ( >0.01 microm) is accompanied by a shift of the concentration maxima to larger particle diameters.  相似文献   

15.
Retail buildings have a potential for both short‐term (customer) and long‐term (occupational) exposure to indoor pollutants. However, little is known about volatile organic compound (VOC) concentrations in the retail sector and influencing factors, such as ventilation, in‐store activities, and store type. We measured VOC concentrations and ventilation rates in 14 retail stores in Texas and Pennsylvania. With the exception of formaldehyde and acetaldehyde, VOCs were present in retail stores at concentrations well below health guidelines. Indoor formaldehyde concentrations ranged from 4.6 ppb to 67 ppb. The two mid‐sized grocery stores in the sample had the highest levels of ethanol and acetaldehyde, with concentrations up to 2.6 ppm and 92 ppb, respectively, possibly due to the preparation of dough and baking activities. Indoor‐to‐outdoor concentration ratios indicated that indoor sources were the main contributors to indoor VOC concentrations for the majority of compounds. There was no strong correlation between ventilation and VOC concentrations across all stores. However, increasing the air exchange rates at two stores led to lower indoor VOC concentrations, suggesting that ventilation can be used to reduce concentrations for some specific stores.  相似文献   

16.
Indoor exposure to air contaminants penetrating from the outdoor environment depends on a number of key processes and parameters such as the ventilation rate, the geometric characteristics of the indoor environment, the outdoor concentration and the indoor removal mechanisms. In this study two alternative methods are used, an analytical and a numerical one, in order to study the time lag and the reduction of the variances of the indoor concentrations, and to estimate the deposition rate of the air contaminants in the indoor environment employing both indoor and outdoor measurements of air contaminants. The analytical method is based on a solution of the mass balance equation involving an outdoor concentration pulse which varies sinusoidally with the time, while the numerical method involves the application of the MIAQ indoor air quality model assuming a triangular pulse. The ratio of the fluctuation of the indoor concentrations to the outdoor ones and the time lag were estimated for different values of the deposition velocity, the ventilation rate and the duration of the outdoor pulse. Results have showed that the time lag between the indoor and outdoor concentrations is inversely proportional to the deposition and ventilation rates, while is proportional to the duration of the outdoor pulse. The decrease of the ventilation and the deposition rate results in a rapid decrement of the variance ratio of indoor to outdoor concentrations and to an increment of the variance ratio, respectively. The methods presented here can be applied for gaseous species as well as for particulate matter. The nomograms and theoretical relationships that resulted from the simulation results and the analytical methods respectively were used in order to study indoor air phenomena. In particular they were used for the estimation of SO2 deposition rate. Implications of the studied parameters to exposure studies were estimated by calculating the ratio of the indoor exposure to the exposure outdoors. Limitations of the methods were explored by testing various scenarios which are usually met in the indoor environment. Strong indoor emissions, intense chemistry and varying ventilation rates (opening and closing of the windows) were found to radically influence the time lag and fluctuation ratios.  相似文献   

17.
Ozone concentrations were measured in indoor and outdoor residential air during the summer of 1992. Six homes located in a New Jersey suburban area were chosen for analysis, and each home was monitored for 6 days under different ventilation and indoor combustion conditions. The 5-hour average ozone concentration outdoors over the monitoring period was 95 ± 36 ppbv. One third of the days exceeded the National Ambient Air Quality Standard (NAAQS), one-hour maximum concentration of 120 ppb. The mean indoor to outdoor (I/O) ratios of ozone concentration ranged from 0.22 ± 0.09 to 0.62 ± 0.11, depending upon ventilation rate and indoor gas combustion. The presence of indoor gas combustion can significantly decrease the I/O ratio. Because of the great amount of time that people spend indoors, the indoor residential exposures were estimated to account for 57% of the total residential exposures. One type of the possible gas-phase reactions for indoor ozone, the reaction of ozone with a volatile organic compound containing unsaturated carbon-carbon bonds, is discussed with some supporting evidence provided in the study.  相似文献   

18.
Conservation measures that seal a building, such as storm window installation, can significantly reduce its energy requirements. These measures also protect its occupants from air pollutants having outdoor sources but amplify any harmful effects of those generated indoors. Which effect is greater?Since it is inadequate to consider pollution levels constant, we assume that they follow daily cycles and can thus be well represented by Fourier series. We conclude that the indoor concentration of any pollutant generated solely outdoors also follows a daily cycle but its maximum lags behind and is lower than the outdoor maximum to an extent depending in an inverse manner on v, the air exchange (ventilation + infiltration) rate. A simple measure of the daily variation of pollutant concentrations and indoor production rates can be derived from their Fourier series and used to test whether these quantities can be assumed constant.Although average daily indoor and outdoor pollutant concentrations of any pollutant are the same if there are no indoor sinks, lowering v will still protect a building's occupant if: (1) the outdoor peak or variation above its average is much greater than its average, and (2) the peak is short-lived.Lowering v probably raises indoor average and peak pollutant concentrations from all indoor sources by at least as much as it lowers only peaks from just one outdoor source, rush hour traffic, thus increasing indoor pollutant levels.  相似文献   

19.
Ozone reacts with skin lipids such as squalene, generating an array of organic compounds, some of which can act as respiratory or skin irritants. Thus, it is important to quantify and predict the formation of these products under different conditions in indoor environments. We developed the kinetic multilayer model that explicitly resolves mass transport and chemical reactions at the skin and in the gas phase (KM‐SUB‐Skin). It can reproduce the concentrations of ozone and organic compounds in previous measurements and new experiments. This enabled the spatial and temporal concentration profiles in the skin oil and underlying skin layers to be resolved. Upon exposure to ~30 ppb ozone, the concentrations of squalene ozonolysis products in the gas phase and in the skin reach up to several ppb and on the order of ~10 mmol m?3. Depending on various factors including the number of people, room size, and air exchange rates, concentrations of ozone can decrease substantially due to reactions with skin lipids. Ozone and dicarbonyls quickly react away in the upper layers of the skin, preventing them from penetrating deeply into the skin and hence reaching the blood.  相似文献   

20.
Lars E. Ekberg 《Indoor air》1994,4(3):189-196
The indoor concentrations of contaminants originating from outdoor sources have been measured and calculated under transient conditions. The results show that contaminants that are supplied to an office building via the ventilation system can reach considerably high concentration levels. The indoor/outdoor concentration ratio and time lag are dependent on the air change rate. In buildings with low air change rates the indoor concentration variations are smoothed out compared to buildings with high air change rates. The results from the theoretical model are compared to the results from both laboratory and field measurements and the model is verified for well mixed conditions in a 20 m3 test chamber. The model can be used to simulate different control strategies for reduction of indoor contaminant concentrations related to outdoor sources. One such control strategy is based on reduction of the outdoor air change rate during periods with peak outdoor contaminant concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号