首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, nano Fe2O3/carbon black electrodes are proposed for electrochemical capacitors and the effect of nanoparticles dispersion quality on the surface morphology, nature and electrochemical properties of the electrodes are investigated. Mechanical pressing is accompanied by different mixing (mechanical and sonication) processes to prepare the electrode. Electrochemical properties of the produced nanocomposites are studied using cyclic voltammetry and electrochemical impedance spectroscopy tests in 2 M KCl electrolyte. Scanning electron microscopy is used to characterize the microstructure and the nature of the nanoparticles on the nanocomposites produced. Results obtained show that the sonicated and unsonicated 10:80:10 (CB:Fe2O3:PTFE) electrodes have specific capacitance of 22.02 and 22.35 F g−1 respectively, at scan rate of 10 mV s−1. Sonication process breaks the agglomerated particles and disperses them on the electrode surface, uniformly. This increases the specific surface area and the electrical resistance of the electrodes. The sonicated electrodes show a higher charge separation capability at electrolyte/electrode interfaces, lower ratio of outer to total charge (qO*/qT*) of 0.13 and lower current response at end potentials. Energy density was increased after the sonication process from 0.686 to 1.498 (Wh kg−1). Charge/discharge cycling results confirmed that the uniform dispersion of active material on the electrode surface postpones the electrolyte decomposition and improves the electrical conductivity during cycling.  相似文献   

2.
Crystals of Co3O4 have been prepared from thermal decomposition of molecular precursors derived from salicylic acid and cobalt (II) acetate or chloride at 500 °C. A cubic phase Co3O4 micro- and nanocrystals have been obtained. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The images of electron microscopes showed octahedral crystals of Co3O4. The volume and polarizability of the optimized structures of molecular precursors have been calculated and related to the particle size. The optical band gap of the obtained crystals has been measured. The results indicated two optical band gaps with values 2.65 and 2.95 eV for (Eg1) (Eg2), respectively.  相似文献   

3.
In the present study, hierarchical α-Fe2O3/SnO2 hollow heterostructures were successfully synthesized by a template growth method. The crystal structure, morphology, composition and surface area of obtained heterostructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and BET surface area analysis. The results reveal that [001]-directed SnO2 nanorods grow on the side surface of the [001]-directed α-Fe2O3 hollow nanotubes/nanorings, forming (110)α-Fe2O3//(101)SnO2(110)α-Fe2O3//(101)SnO2 and (100)α-Fe2O3//(001)SnO2(100)α-Fe2O3//(001)SnO2 interfaces. These heterostructures can be further converted into magnetic γ-Fe2O3/SnO2 heterostructure without any significant change in morphology. These α-Fe2O3/SnO2 hollow heterostructures exhibit much higher photocatalytic activities for degradation of methylene blue in comparison with that of pure α-Fe2O3 nanotubes/nanorings in the wide spectral region from UV to visible due to both larger surface area and improved electron–hole separation efficiency in the interface of heterostructure.  相似文献   

4.
Multi-pods Au/FeOOH nanostructures were synthesized by a hydrothermal treatment of an aqueous solution of mixed micellar formed by gold nanoparticles, hexadecyltrimethyl ammonium bromide (CTAB), and (NH4)3[FeF6] at 160 °C for 48 h and sequential calcined at 290 °C for 1.5 h, resulting in the formation of multi-pods Au/Fe2O3 nanostructures. The as-obtained products were characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, field emission scanning electron microscopy, and UV-vis spectroscopy. Surface plasmon resonance band of gold nanoparticles was observed in the multi-pods Au/FeOOH nanostructures. However, a similar behavior was not seen with multi-pods Au/Fe2O3 nanostructures. The critical role of F ions and CTAB molecules in the formation of FeO(OH) multipods and the probable mechanism of the formation of multi-pods Au/FeOOH and Au/Fe2O3 nanostructures were discussed.  相似文献   

5.
Heterostructured Fe3O4/Bi2O2CO3 photocatalyst was synthesized by a two-step method. First, Fe3O4 nanoparticles with the size of ca. 10 nm were synthesized by chemical method at room temperature and then heterostructured Fe3O4/Bi2O2CO3 photocatalyst was synthesized by hydrothermal method at 180 °C for 24 h with the addition of 10 wt% Fe3O4 nanoparticles into the precursor suspension of Bi2O2CO3. The pH value of synthesis suspension was adjusted to 4 and 6 with the addition of 2 M NaOH aqueous solution. By controlling the pH of synthesis suspension at 4 and 6, sphere- and flower-like Fe3O4/Bi2O2CO3 photocatalysts were obtained, respectively. Both photocatalysts demonstrate superparamagnetic behavior at room temperature. The UV–vis diffuse reflectance spectra of the photocatalysts confirm that all the heterostructured photocatalysts are responsive to visible light. The photocatalytic activity of the heterostructured photocatalysts was evaluated for the degradation of methylene blue (MB) and methyl orange (MO) in aqueous solution over the photocatalysts under visible light irradiation. The heterostructured photocatalysts prepared in this study exhibit highly efficient visible-light-driven photocatalytic activity for the degradation of MB and MO, and they can be easily recovered by applying an external magnetic field.  相似文献   

6.
A facile precipitation route was developed for the synthesis of cobalt hexacyanoferrate (CoHCF) as a thin shell around cores of nanoparticles of iron(III) oxide, forming nanoparticles of iron(III) oxide@CoHCF (n-Fe2O3@NaCo[Fe(CN)6]). The morphology and structure of the as-prepared n-Fe2O3@NaCo[Fe(CN)6] were characterized by the techniques of electron microscopies, X-ray diffraction measurements, X-ray photoelectron spectroscopy, infrared spectroscopy and thermogravimetry. Carbon composite electrodes of n-Fe2O3@NaCo[Fe(CN)6] were prepared and the electrochemical behavior of the nanoparticles was evaluated using cyclic voltammetry. The redox couples of n-Fe2O3@NaCo[Fe(CN)6] were investigated and the diffusion coefficients of counter cation in the shell of CoHCF were obtained. The effect of size of particles and the structure of CoHCF was also evaluated. n-Fe2O3@NaCo[Fe(CN)6] represented prominent electrocatalytic activity toward the oxidation of some biologically active compounds.  相似文献   

7.
Precursors of Co3O4 and Ag/Co3O4 composites with sheet-like shape were synthesized with assistance of ethylene glycol via a solvothermal process. The final samples were obtained by calcining each precursor at 400 °C. The as-prepared samples were identified and characterized by thermogravimetric analysis (TG) and differential thermal gravimetric (DTG) analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The Co3O4 and Ag/Co3O4 composite nanosheets were used as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol and H2O2 reduction respectively in a basic solution. The electrocatalytic results showed that p-nitrophenol could be reduced by pure Co3O4 at a large peak current but a rather higher peak potential, and could be reduced effectively by Ag/Co3O4 composites at lower potential. Ag/Co3O4 composites with 6% Ag displayed the highest electrocatalytic activity for H2O2 reduction at the largest peak current and a lower peak potential. The reduction peak potentials of H2O2 all reduced a great deal using Ag/Co3O4 composite.  相似文献   

8.
The purpose of this research was to synthesize and characterize gold-coated Fe3O4/SiO2 nanoshells for biomedical applications. Magnetite nanoparticles (NPs) were prepared using co-precipitation method. Smaller particles were synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g−1. For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of 80–100 emu g−1 and coercivity of 80–120 Oe for particles between 35 and 96 nm, respectively. The magnetic NPs were modified with a thin layer of silica using Stober method. Small gold colloids (1–3 nm) were synthesized using Duff method and covered the amino functionalized particle surface. Magnetic and optical properties of gold nanoshells were assessed using Brunauer–Emmett–Teller (BET), vibrating sample magnetometer (VSM), UV–Vis spectrophotometer, atomic and magnetic force microscope (AFM, MFM), and transmission electron microscope (TEM). Based on the X-ray diffraction (XRD) results, three main peaks of Au (1 1 1), (2 0 0) and (2 2 0) were identified. The formation of each layer of a nanoshell is also demonstrated by Fourier transform infrared (FTIR) results. The Fe3O4/SiO2/Au nanostructures, with 85 nm as particle size, exhibited an absorption peak at ∼550 nm with a magnetization value of 1.3 emu g−1 with a specific surface area of 71 m2 g−1.  相似文献   

9.
Controlled synthesis of Mn3O4 nanocrystals and MnCO3 aggregates was achieved by a facile solvothermal method using different divalent manganese source in the solvent of N,N-dimethylformamide (DMF) with/without the introduction of poly(vinylpyrrolidone) (PVP). PVP was used as a co-reducing reagent in the controlled formation of MnCO3 crystal. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED), Fourier transform infrared (FTIR) spectra, Raman spectrum and magnetic measurement. Higher process temperature and longer solvothermal time were favorable for the formation of MnCO3 single phase using MnCl2 as the manganese source. Mn3O4 nanocrystals were prepared at a relatively lower temperature. MnCO3 aggregates consisted by small nanoparticles have a certain orientation, showing that the nanocrystals formed earlier through oriented aggregation. The size of Mn3O4 nanocrystals was 22.5 ± 7.3 nm and 7.3 ± 1.4 nm prepared using MnCl2 and Mn(CH3COO)2, respectively, at 160 °C for 24 h. Raman spectra showed size-dependent characteristics. Smaller Mn3O4 nanoparticle resulted in a red-shift in Raman spectra. Magnetic property of the prepared Mn3O4 nanoparticle was influenced by the size distribution and crystallinity.  相似文献   

10.
Iron oxide films were grown on sapphire substrates by pulsed laser deposition at substrate temperatures between 100 and 700 °C. X-ray diffraction, Raman spectroscopy, and vibrational sample magnetometer analysis revealed that structural and magnetic properties of the iron oxide films strongly depend on the substrate temperature during growth. Single phase Fe3O4 film was successfully grown on sapphire substrate at a substrate temperature of 500 °C. The saturation magnetic moment of the single phase Fe3O4 film is 499 emu/cm3, which is in good agreement with the value reported for bulk magnetite, suggesting the Fe3O4 film is of high crystal quality without antiphase boundaries.  相似文献   

11.
Preparation and characterization of porous ultrafine Fe2O3 particles   总被引:1,自引:0,他引:1  
Porous ultrafine Fe2O3 particles were prepared by homogeneous precipitation method. Fe3+ and urea were chosen as starting materials and anionic surfactant as the template. It is shown that the reaction results in the precipitation of a gelatinous hydrous iron oxide/surfactant mixture, which gives ultrafine Fe2O3 particles after drying and calcinations. The products were characterized by XRD, TEM, TG/DTA and BET. Conventional XRD patterns show that the products are mixture of γ-Fe2O3 and α-Fe2O3 phase after being sintered at 350 °C, and γ-Fe2O3 transforms entirely to α-Fe2O3 when sintered at 650 °C. The low-angle XRD patterns indicate that the mesostructure can only exist between 350 and 400 °C. TEM results show that the Fe2O3 particles have diameters of about 30 nm and lengths ranging from 100 to 120 nm; in each particle, there are several vermiculate-like mesopores with diameter of about 20-25 nm. The BET surface areas in excess of 50 m2/g are obtained after calcinations at 350 °C. The BJH desorption average pore width is around 22 nm, which is in agreement with the TEM results. The results show that anionic surfactant and sintering temperature are important to obtain this special morphology.  相似文献   

12.
The subsolidus phase equilibria of the Li2O-Ta2O5-B2O3, K2O-Ta2O5-B2O3 and Li2O-WO3-B2O3 systems have been investigated mainly by means of the powder X-ray diffraction method. Two ternary compounds, KTaB2O6 and K3Ta3B2O12 were confirmed in the system K2O-Ta2O5-B2O3. Crystal structure of compound KTaB2O6 has been refined from X-ray powder diffraction data using the Rietveld method. The compound crystallizes in the orthorhombic, space group Pmn21 (No. 31), with lattice parameters a = 7.3253(4) Å, b = 3.8402(2) Å, c = 9.3040(5) Å, z = 2 and Dcalc = 4.283 g/cm3. The powder second harmonic generation (SHG) coefficients of KTaB2O6 and K3Ta3B2O12 were five times and two times as large as that of KH2PO4 (KDP), respectively.  相似文献   

13.
A composite of Fe2O3 capped by conductive polyaniline (PANI) was synthesized by a facile two-step method through combining homogeneous Fe2O3 suspension prepared by a hydrothermal method and in-situ polymerization of aniline. As anode material for lithium ion batteries, the Fe2O3/PANI composite manifests very large discharge capacities of 1635 mAh g−1, 1480 mAh g−1 at large currents of 1.0 and 2.0 A g−1 (1C and 2C), respectively, as well as good cycling performance and rate capacity. The enhancement of electrochemical performance is attributed to the improved electrical conductivity and effective ion transportation of the composite electrode, in that, PANI keeps the Fe2O3 nanorods uniformly connected and offers conductive contact between the electrolyte and the active electrode materials.  相似文献   

14.
Li1.33Ni1/3Co1/3Mn1/3O2 with highly ordered structure has been successfully synthesized via a simple co-precipitation process. Charge–discharge tests showed that the initial discharge capacities are 153.0 mAh g−1 and 128.9 mAh g−1 at 5 C (1000 mA g−1) and 10 C (2000 mA g−1) between 2.5 and 4.5 V, respectively. The average full-charge time of this material is less than 12 min at 5 C and 6 min at 10 C. The electrode material composed of the prepared showed a better cyclability. The excellent high rate performance is attributed to the improved ordered layered structure and the electrical conductivity. The excess Li shorten Li+ diffusion distance between these submicron and nano-scaled particles. The results show that Li1.33Ni1/3Co1/3Mn1/3O2 cathode material has potential application in lithium ion batteries.  相似文献   

15.
Iron oxide nanoparticles have been produced on the top surface of aligned multi-walled carbon nanotubes by CO2 laser processing. They were characterized to be Fe2O3 nanoparticles by X-ray photoelectron spectroscopy, X-ray diffraction and high resolution scanning electronic microscopy. Absorption bands in the visible region were found to be redshifted compared with the absorption of Fe2O3 nanoparticles prepared by traditional chemical methods. Photoluminescence from these Fe2O3 nanoparticles shows a broad emission band in the near infrared region for both excitations at 514 and 633 nm. Particle size is considered to be responsible for the unique optical properties of the Fe2O3 nanoparticles.  相似文献   

16.
Multi-walled carbon nanotubes (MWNTs) were selectively etched in molten nitrate to produce short MWNTs (s-MWNTs). MnO2/s-MWNT nanocomposite was synthesized by a reduction of potassium permanganate under microwave irradiation. For comparative purpose, MnO2/MWNT nanocomposite was also synthesized and investigated for its physical and electrochemical performance. Uniform and conformal MnO2 coatings were more easily formed on the surfaces of individual s-MWNTs. MnO2/s-MWNT nanocomposite estimated by cyclic voltammetry (CV) in 0.5 M Na2SO4 aqueous solution had the specific capacitance as high as 392.1 F g−1 at 2 mV s−1. This value was more than 48.9% larger than MnO2/s-MWNT nanocomposite. In addition, MnO2/s-MWNT nanocomposite was also examined by repeating the CV test at a scan rate of 50 mV s−1, exhibiting an excellent cycling stability along with 99.2% specific capacitance retained after 1000 cycles. Therefore, MnO2/s-MWNT nanocomposite is a promising electrode material in the supercapacitors.  相似文献   

17.
Nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101 nm with hexagonal α-NaFeO2 structures are prepared directly by flame spray pyrolysis. Post-treatment of the powders at 700 °C increases their crystallinity and mean particle sizes. The intensity ratios of the powders’ (0 0 3) and (1 0 4) peaks in the XRD patterns prepared from spray solutions with lithium excesses of 10, 15 and 20% of the stoichiometric amount are 0.83, 1.25 and 1.25, respectively. The powder prepared with 15% excess lithium results in the highest initial discharge capacity of 174 mAh g−1 when post-treated at 700 °C. The discharge capacity of the powder post-treated at 800 °C decreases from 168 to 120 mAh g−1 after 30 cycles.  相似文献   

18.
Nanofibrous composites are a new class of polymer materials with controlled and tailored properties. Novel Fe3O4/poly(acrylonitrile-co-acrylic acid) nanofibrous composites with magnetic behavior have been prepared by a simple electrospinning process. The nanofibrous composites were characterized by X-ray diffraction, field emission scanning electron microscopy and vibrating sample magnetometer. The distribution of Fe3O4 nanoparticles inside the nanofibrous composites was investigated by field emission scanning electron microscopy. X-ray diffraction revealed the presence of Fe3O4 nanoparticles in the nanofibrous composites. The maximum saturation magnetization for the composites, measured at 300 K, was 30.51 emu/g.  相似文献   

19.
Nitrogen doped anatase TiO2 (N-TiO2) were prepared by hydrothermally treating TiN with H2O2. The as-synthesized samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis diffuse reflectance spectrum (DRS), Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS) techniques. The results confirmed that the hydrothermal oxidation is an effective method to prepare N-doped TiO2 anatase. The nitrogen concentration in TiO2 could be controlled by the concentration of H2O2 solution. Photocatalytic degradation of methyl orange (MO) was carried out under visible light and UV-visible light irradiation, respectively. The as-prepared optimal N-TiO2 showed higher photocatalytic activity than N-P25 and P25, and exhibited excellent reusability.  相似文献   

20.
The influence of catalytic and operational parameters on the rate of growth and quality of carbon nanotubes has been investigated. A series of Fe2O3/Al2O3 catalysts prepared by different methods were investigated under conditions of synthesis of CNTs via the process of CVD of ethylene. Deposition experiments were carried out in a thermogravimetric hot-wall reactor, which enables continuous monitoring of the evolution of carbon mass with time. Controlled explosive burning (CEB) of precursor compounds was found to be the most effective method of preparation of the catalyst with respect to rate of deposition and yield of CNTs. This result has been attributed to the presence of hematite particles of small diameter on the catalyst. The presence of hydrogen in the gas feed mixture, even at small concentration, proved to be beneficial for the rate of production of MWCNTs and to result in the synthesis of CNTs of narrower diameter distribution. Yield and quality of MWCNTs depend on the concentration of the carbon source (ethylene) in the feed mixture and on temperature of deposition. Under the present experimental conditions, the optimal reaction temperature was found to be 650 °C. The products of the deposition were characterized using scanning electron microscopy and Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号