首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New basic solid catalysts are obtained by nitridation of zeolite beta at temperatures as low as 300 °C. These materials exhibit excellent catalytic activity in the Knoevenagel condensation of benzaldehyde with dicyanomethane (malononitrile). Nitridated samples of zeolite beta were prepared by treating the parent materials in an ammonia flow at temperatures between 300 °C and 800 °C for 24 h and 48 h, respectively. Samples of zeolite beta nitridated at 300 °C for 24 h or 48 h exhibited excellent catalytic activities which are higher than those observed for beta-type catalysts nitridated at higher temperatures and higher than activities reported earlier for ammonia treated aluminosilicates, AlPOs, SAPOs, and mesoporous silicon oxinitride materials. The nitridated beta zeolites were characterized by powder XRD, FTIR, nitrogen adsorption and elemental analysis techniques. It is suggested that the presence of silanol groups along with basic –NH2 functional groups is responsible for the exceptional activity of the catalysts treated at low temperature.  相似文献   

2.
Novel chitosan/titanium dioxide (CS/TiO2) nanocomposite membranes were prepared using tetrabutyl titanate (TBT) as precursor and acetyl acetone as chelating agent by in situ sol-gel process, and characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetry (TG). The characterization results demonstrated that nano-sized TiO2 particles dispersed homogeneously within the CS matrix, which could be assigned to the hydrogen and titanoxane bonds formed between CS and TiO2. Moreover, the pervaporation performance of these membranes was investigated using the separation of ethanol-water mixture as model system. Compared with CS/TiO2 hybrid membranes prepared by blending method, most of CS/TiO2 nanocomposite membranes prepared by in situ sol-gel process exhibited higher permeation flux and separation factor under the identical conditions. Among all the prepared membranes, CS/TiO2 nanocomposite membrane containing 6 wt% TiO2 exhibited the best pervaporation performance, whose averaged permeation flux and separation factor were 0.340 kg m−2 h−1 and 196 for 90 wt% aqueous solution of ethanol at 80 °C, respectively.  相似文献   

3.
The conversion of methanol to dimethyl ether was carried out over various commercial zeolites and modified H-ZSM-5 catalysts to evaluate their catalytic performance. A series of commercially available zeolite samples were used for vapor-phase dehydration of methanol to DME. Catalyst screening tests were performed in a fixed-bed reactor under the same operating conditions (T = 300 °С, P = 16 barg, WHSV = 3.8 h1). It was found that all the H-form zeolite catalysts in this study were active and selective for DME synthesis. According to the experimental results MDHC-1 catalyst exhibited the highest activity in dehydration of methanol.After finding the most active catalyst, the H-MFI90 zeolite was modified with Na content varying from 0 to 120 mol%, via wet-impregnation method to further improve its selectivity. All of catalysts were characterized by BET, XRD, NH3-TPD, ICP, TGA, SEM, FT-IR and TPH techniques. It was found that these materials affected activity of MDHC-1 zeolite by changing its acidity. Ultimately, among all the catalysts studied, Na100-modified H-MFI90 zeolite exhibited optimum activity, selectivity and stability at methanol dehydration reaction.  相似文献   

4.
The zeolite beta is a crystalline synthetic aluminosilicate with wide-pore size (6 to 9 Å) and a Si/Al ratio from 5 to 100. In this study, we have investigated the influence of several synthesis parameters on the physicochemical properties of the materials. The synthesis of zeolite beta has been performed by hydrothermal method, the aluminum source and gallium content in the structure being variable. The structural characterization was carried out by means of X-ray diffraction, SEM and 27Al and 71Ga MAS NMR spectroscopy. When the aluminum sulfate is used as aluminium source, zeolite beta with higher crystallinity is generated. All the samples showed a XRD pattern similar to crystalline zeolite beta and the 27Al and 71Ga MAS NMR spectrum demonstrated that the incorporation of both heteroatoms was efficient.  相似文献   

5.
Zeolite beta crystals (Si/Al = 35) synthesized in fluoride medium were treated in aqueous 0.2 M NaOH solution for mesopore formation by selective extraction of framework silicon. A 16 parallel-batch reactor was used to study the influence of the treatment time and temperature on the physico-chemical properties of the zeolites, which were characterized by ICP-OES, XRD, N2 adsorption at 77 K, SEM, TEM, DRIFTS, and in situ ATR-IR. Alkaline treatment of H-beta within the optimal window of Si/Al ratios identified for other zeolite families leads to extensive silicon extraction at mild treatment conditions. This originates substantial mesoporosity and presumably improved transport, but negatively impacts on the microporous and acidic properties of the resulting sample. Consequently, the alkaline-treated beta zeolites show lower catalytic activity in the acid-catalyzed liquid-phase benzene alkylation than the purely microporous parent material. The relatively low stability of framework aluminum in BEA, compared to MFI and MOR, is detrimental for the controlled mesopore formation by Si dissolution, since aluminum cannot optimally exert its pore-directing role.  相似文献   

6.
La/zeolite beta was prepared by an ion exchange method and used to synthesize the biodiesel (fatty acid methyl esters, FAME). The La(NO3)3 was applied as the ion exchange precursor to incorporate La ion into zeolite beta. The composition of the zeolite beta before and after ion exchange was analyzed by the SEM microphotographs and EDS spectrograms, the Brønsted and Lewis acid sites were investigated by FTIR imaging. The transesterification was carried out in a batch reactor and the composition of the FAME product was determined by a potassium hydroxide saponification method. The syntheses conditions with respect to catalytic activities have been optimized individually. Results of the experiment showed that La/zeolite beta shows higher conversion and stability than zeolite beta for the production of biodiesel, which may be correlated to the higher quantity of external Brønsted acid sites available for the reactants. The product consists of a mixture of monoalkyl esters primarily, and when the methanol/ soybean oil molar ratio was 14.5, reaction temperature at 333 K, reaction time 4 h and catalyst/soybean oil mass ratio of 0.011, the conversion of triglyceride 48.9 wt% was obtained from this optimal reaction condition.  相似文献   

7.
Ceramic membranes specially zeolite membranes are usually used for dewatering of organics by pervaporation. In the previous work, it was observed that kaolin calcined at 1050 °C has a separation factor 19.25 while kaolin calcined at 800 °C does not show any separation activity and its separation factor is equal to 1. In this research, effect of calcination temperature on flux and separation factor of kaolin modules that prepared by electrophoresis as a support of zeolite membranes was investigated. By increasing the kaolin calcination temperature, the flux of membrane increases due to many pores created in the module. This was confirmed by SEM micrographs. The highest flux was about 18 kg/m2 h for modules calcined at 1200 °C with ethanol 95%. Their separation factors were almost the same for each module. It was very low but comparable with some porous and non-porous polymeric membranes. Increasing calcination temperature causes module strength to enhance. It was found that the module calcined at 1200 °C may be suitable as a support for zeolite A membranes.  相似文献   

8.
In this article, permeation models for nanocomposite polymeric membranes (NCPMs) filled with nonporous particles are discussed and two new models for prediction of effective permeability of NCPMs are proposed. To derive these models, the presence of interfacial layer at the surface of the nanofiller particles as well as the impact of two important phenomena namely creating void volumes and increasing free volume at the interface layer are taken into account. The capability of the models for prediction of reliable results is checked against available experimental data on permeability of NCPMs and is also compared with other presented models for such membranes. The new proposed models show profound superiority over the well known models such as “Bruggeman model in limit” which offers fairly good prediction for NCPMs.  相似文献   

9.
Zeolite NaA membranes have been reproducibly prepared by seeded hydrothermal synthesis on the internal surface of porous -alumina tubular supports. A cross-flow filtration technique has been developed to allow a controlled seeding of zeolite NaA crystals from a suspension according to transmembrane pressure, pH, seed suspension flow rate, crystal size and concentration. The optimal seeding weight gain was found to be around 0.40 mg cm−2 of membrane area. With this procedure, zeolite membranes with selectivities up to 600 at fluxes of 0.50 kg m−2 h−1 were obtained in the pervaporation of 92:8 wt.% ethanol/water mixtures at 323 K.  相似文献   

10.
-Alumina-supported MFI zeolite membranes were modified by on-stream catalytic thermal cracking of methyldiethoxysilane (MDES) molecules inside the zeolitic channels during the separation of H2/CO2 gas mixture at 450 °C and atmospheric pressure. The MDES vapor was carried by the H2/CO2 feed gas and the effect of modification was monitored continuously through online analysis of the permeate stream. The modified membrane exhibited a significant increase in H2 selectivity over CO2 with a moderate decrease in H2 permeance. At 450 °C, the modified MFI membrane obtained a H2/CO2 permselectivity of 17.5 with H2 single gas permeance of 1.86 × 10−7 mol m−2 s−1 Pa−1 as compared to a permselectivity of 2.78 and permeance of 2.75 × 10−7 mol m−2 s−1 Pa−1 for the membrane before modification. The modified membrane also showed good performance and stability in separation of H2/CO2 gas mixture containing up to 28.4% water vapor at 450 °C and atmospheric pressure.  相似文献   

11.
Zeolite membranes offer outstanding potentials in separation of many molecular mixtures due to their molecular sieving selectivity and the high thermal and mechanical stability that allow them to operate at harsh conditions.Development of durable and high separation performance membranes with lower fabrication and operation cost are highly demanded for industrial applications. Zeolite T membrane possesses good acid-resistance with excellent hydrophilic properties as compared to NaA zeolite membrane and can be extended to industrial organic dehydrations under an acidic environment. In the present review the research advances in development of zeolite T membranes for the dehydration of organic mixtures in acidic conditions are summarized. Especially the low temperature synthesis, and epitaxial growth of the zeolite membrane with high performance are well addressed, besides emphasis is particularly placed on ensemble synthesis of hollow fiber zeolite T membrane module and its future prospects for industrial separations.  相似文献   

12.
The interaction of acetic anhydride with the Na- and H-forms of zeolite BETA, as well as with materials where copper or iron has been introduced into BEA by ion exchange, has been studied by temperature programmed desorption (TPD). In all cases acetic acid is a main desorption product in the temperature range 370–570 K. Ketene desorption is also significant, although it is argued that much of it is retained in the zeolite pores, where it undergoes further decomposition into carbon monoxide, hydrogen and water. There is an inverse correlation between the quantity of ketene desorbed and the activity of the catalysts in the catalytic acylation of anisole by acetic anhydride to yield p-methoxyacetophenone. The significance of this observation is discussed and an acylation mechanism involving ketene is proposed.  相似文献   

13.
Pervaporation (including vapor permeation) is a kind of new membrane separation technology, possessing the advantages of high efficiency, energy saving and convenient operation. It has promising application in the separation and purification of organic solvents. Dehydration is an important step in the production and recovery of organic solvents. Zeolite membranes have attracted wide attention for pervaporation dehydration due to their high separation performance and good thermal/chemical stability. So far, zeolite membranes have been preliminarily industrialized for dehydration of organic solvents. This paper reviews the recent development of zeolitemembranes for pervaporation dehydration, includingmass transfermodels, preparation and applications of zeolite membranes. The review also discusses the current industrial applications of zeolite membranes and their future development in pervaporation.  相似文献   

14.
Dehydration of water/1-1-dimethylhydrazine mixtures by zeolite membranes   总被引:3,自引:0,他引:3  
In this research, dehydration of water/1-1-dimethylhydrazine (UDMH) mixtures by zeolite NaA and hydroxy sodalite membranes has been investigated. Support of these membranes has been tubular mullites that have been made by extruding a mixture of about 67–75% kaolin clay and 33–25% distilled water using an extruder. Zeolite NaA and hydroxy sodalite membranes have been coated on the external surface of the porous supports by the hydrothermal synthesis.

UDMH/water mixtures have been separated at ambient temperature and pressure by pervaporation (PV) using these zeolite membranes. These membranes showed very high selectivity of water for all UDMH mixtures. For the UDMH/water mixtures, separation factor as high as 10 000 has been obtained for UDMH feed concentration of 2%. Total mass fluxes of 1.05–0.2 kg/(m2 h) have been also obtained.  相似文献   


15.
Titanate nanotubes (TNTs) about 10 nm in diameter and 200–600 nm in length were hydrothermally synthesized, and then incorporated into a chitosan (CS) matrix to fabricate chitosan/titanate nanotube (CS/TNT) hybrid membranes for a direct methanol fuel cell (DMFC). These hybrid membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray powder diffraction (XRD), thermogravimetry (TG), and positron annihilation lifetime spectroscopy (PALS). Moreover, their performances, including mechanical strength, water and methanol uptake, methanol permeability, and proton conductivity were determined. SEM results demonstrated that TNTs dispersed homogeneously in the hybrid membranes. Mechanical strength and TG measurements demonstrated that the mechanical and thermal stability of CS/TNT hybrid membranes were much higher than those of pure chitosan membranes. PALS analysis revealed that the fractional free volume (FFV) of CS/TNT hybrid membranes increased with the incorporation of TNTs and, thus, resulting in the reduction of methanol crossover. In all as‐prepared membranes, the hybrid membrane containing 15 wt % TNTs exhibited the highest mechanical strength of 85.0 MPa, low methanol permeability of 0.497 · 10–6 cm2·s–1, and proton conductivity of 0.0151 S·cm–1, which had the potential for DMFC applications.  相似文献   

16.
A hollow-fiber-supported stable Au/FAU catalytic membrane was successfully synthesized through a polydopamine coating modification-removal strategy and used as a flow-through catalytic membrane reactor for preferential oxidation of CO. Small Au nanoparticles can be efficiently isolated by dopamine and the dopamine-derived carbon shells. The interactions between Au nanoparticles and zeolite layer support are enhanced during annealing at high temperature under an inert atmosphere. A zeolite membrane supported Au nanoparticle catalyst was obtained after the removal of carbon shells, which showed high catalytic activity and stability for the removal of CO from hydrogen.  相似文献   

17.
马克  陈寅生  崔韬  李茜 《化工科技》2009,17(5):6-11,14
以聚砜为膜材料,聚乙二醇(PEG)为添加剂,采用浸入沉淀相转化法制备聚砜平板超滤膜,然后对实验制备的聚砜膜进行紫外辐照改性,考察了辐照对聚砜膜结构和性能的影响,研究了膜辐照前后断裂强度的变化,通过表面接触角测定仪、红外分析仪(FTIR)、扫描电镜(SEM)、改性膜的纯水通量和截留性能等方法来表征膜辐照前后的结构和性能变化.研究表明:聚砜膜断裂强度经辐照后变小,但降低幅度不大;在乙醇溶液中紫外辐照后,开始纯水通量提高而截留率降低,但降低幅度不大,时间增加到一定时通量又降低,截留率变化也不大;表面接触角随辐照时间的增长而减小,表明改性后膜表面的亲水性得到明显改善;通过FTIR分析证实在聚砜膜表面产生了新的官能团;SEM实验证实反应只发生在聚砜膜的表面而非膜内部.聚砜超滤膜经紫外辐照改性取得了良好的效果.  相似文献   

18.
Zeolite beta monoliths with hierarchical porosity were prepared by the steam-assisted conversion of pre-seeded bimodal pore silica gel using the Layer-by-Layer process. The bimodal pore silica gel acts as both macrotemplates and silica source. The zeolite beta monoliths were characterized by X-ray diffraction, scanning electron microscopy, IR absorption spectra and nitrogen adsorption measurements. This zeolite beta monolith had hierarchical porosity: the unique micropores within the zeolite, the small macropores generated by aggregation of crystallites and three dimensionally interconnected macropores formed by template of silica gel. It is believed that the hierarchical structured zeolite monoliths will show good properties and potential applications the fields of catalyst, ion exchange, and adsorption.  相似文献   

19.
Ai-Fu Che  Xiao-Dan Huang  Ke Yao 《Polymer》2005,46(24):11060-11065
Asymmetric membranes fabricated from poly(acrylonitrile-co-maleic acid) (PANCMA) were immobilized with heparin and/or insulin to improve their surface properties. These biomacromolecule-immobilized PANCMA membranes were prepared by the amination of the membrane surface with ethylenediamine, followed by the reaction of the amino groups with heparin and/or insulin in the presence of 1-ethyl-3-(3-dimethyl amidopropyl) carbodiimide. The surface-modified membranes were analyzed by X-ray photoelectron spectroscopy to confirm the immobilization of the biomacromolecules. Morphological changes on the membrane surface and in the cross section were characterized by scanning electron microscopy. The surface hydrophilicity and hemocompatibility of the studied membranes were evaluated on the basis of water contact angle, platelets adhesion and cell attachment measurements. It was found that, after the immobilization of the biomacromolecules, the water contact angle and the amount of adhered platelets and macrophages on the membrane decreased significantly when compared with the nascent ones, indicating the improvement of surface hydrophilicity. Furthermore, the heparin immobilized membrane showed the best hemocompatibility among the corresponding membranes studied.  相似文献   

20.
采用填充沸石的电化学反应器对20 mg/L的氨氮模拟污水进行处理研究,考察了影响氨氮去除效果的主要因素及处理效果。结果表明:当采用不锈钢板作为阴阳极、电流密度8 m A/cm2、电源电压60 V、初始p H=5、载铁斜发沸石填充量为200 g/L、曝气量为7 L/min、反应时间20 min时,废水中氨氮质量浓度能从20 mg/L降低到5 mg/L左右,达到国家城市污水处理厂一级A的排放标准(GB 18918—2002)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号