首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low viscosity melamine–urea–formaldehyde (MUF) resin for wood impregnation was synthesized and mixed with layered silicate nanoclays. Ball-milling of the nanoclays was performed to have a better dispersion of the nanoclays into the MUF resin. The effect of nanofillers both milled and unmilled, on the curing and viscoelastic properties of the MUF was investigated, using differential scanning calorimetry and dynamical mechanical thermal analysis methods. Two exotherms were observed during the MUF curing process. The apparent activation energy was lowered for the first exotherm at lower temperature, while increased for the second exotherm, with the addition of nanoclays into the MUF. Ball-milling of nanofillers resulted in an increased apparent activation energy and longer gel time for the milled organophilic nanoclay/MUF, but shorter gel time and better dynamic mechanical properties of the milled hydrophilic nanofiller/MUF, as compared to the correspondingly unmilled nanofiller/MUF systems. The storage modulus of all the nanofiller/MUF resins was considerably increased as compared to the neat MUF resin. This improvement is, however, more obvious for the surface modified layered silicate/MUF system, due to more compatible functional-groups grafted onto the nanoclays, and stronger layered silicate/MUF matrix adhesion, thus better performances were observed for the resulting nanoclay/MUF composites.  相似文献   

2.
Immobilized metal ion affinity chromatography (IMAC) is a useful method for adsorption of proteins that have an affinity for transition metal ions. In this study, poly(hydroxyethyl methacrylate-methacryloyl-l-tryptophan) (PHEMATrp) nanoparticles were prepared by surfactant free emulsion polymerization. Then, Cu(II) ions were chelated on the PHEMATrp nanoparticles to be used in lysozyme adsorption studies in batch system. The maximum lysozyme adsorption capacity of the PHEMATrp nanoparticles was found to be 326.9 mg/g polymer at pH 7.0. The nonspecific lysozyme adsorption onto the PHEMA nanoparticles was negligible. In terms of protein desorption, it was observed that adsorbed lysozyme was readily desorbed in medium containing 1.0 M NaCl. The results showed that the metal-chelated PHEMATrp nanoparticles can be considered as a good adsorbent for lysozyme purification.  相似文献   

3.
Nanocomposites were prepared by melt blending Poly(lactic acid) with 5 and 7 wt% of an organically modified montmorillonite or an organically modified magnesium sodium fluoro-hectorite or unmodified sepiolite.All nanocomposites show a good level of clay dispersion into the polymer matrix as well as a considerable thermal and thermo-mechanical properties improvement. According to thermal analysis, the clays seem to act as nucleating agents inducing a higher degree of crystallinity of the polymer and rate of crystallization. Similar increases in the thermal stability of Poly(lactic acid) were obtained for all clays. Concerning layered silicate nanocomposites, it was found that the main influencing factors on the thermo-mechanical properties appear to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical compatibility. Needle like sepiolite shows thermo-mechanical improvements comparable to some layered silicates and an interesting ability to maintain high storage modulus values at increasing temperatures, due to its good dispersion within the polymer without the need of organic modifiers as instead necessary for layered clays used in this work.  相似文献   

4.
为评价废胶粉-纳米复合改性沥青的高温抗变形性、流变特性及低温韧性,制备了湿法Terminal Blend胶粉-纳米SiO_2复合改性沥青,并借助旋转粘度、针入度、软化点、5℃和15℃延度试验进行了性能表征,还基于实测表观粘度拟合了复合改性沥青粘度-温度关系。结果表明:掺加纳米SiO_2后,复合改性沥青针入度减小,软化点升高,高温抗变形性能得到改善,且纳米SiO_2掺量越大,改善越显著;纳米SiO_2掺量4%时5℃延度比未掺前提高约37.5%。此外,复合改性沥青高温粘度较基质沥青和未纳米改性时有所增加,但135℃粘度不超过1500cP,施工和易性良好;粘度数据拟合还表明在135~200℃温度域内,复合改性沥青粘温关系符合较好的指数关系。  相似文献   

5.
An overview of nanoclays or organically modified layered silicates (organoclays) is presented with emphasis placed on the use of nanoclays as the reinforcement phase in polymer matrices for preparation of polymer/layered silicates nanocomposites, rheological modifier for paints, inks and greases, drug delivery vehicle for controlled release of therapeutic agents, and nanoclays for industrial waste water as well as potable water treatment to make further step into green environment. A little amount of nanoclay can alter the entire properties of polymers, paints, inks and greases to a great extent by dispersing 1nm thick layered silicate throughout the matrices. The flexibility of interlayer spacing of layered silicates accommodates therapeutic agents which can later on be released to damaged cell. Because the release of drugs in drug-intercalated layered materials is controllable, these new materials have a great potential as a delivery host in the pharmaceutical field. The problem of clean water can be solved by treating industrial and municipal waste water with organoclays in combination with other sorbents like activated carbon and alum. Organoclays have proven to be superior to any other water treatment technology in applications where the water to be treated contains substantial amounts of oil and grease or humic acid.  相似文献   

6.
In this paper, adsorption of lysozyme onto two kinds of mesoporous adsorbents (KIT-5 and AISBA-15) has been investigated and the results on the effects of pore geometry and stability of the adsorbents are also discussed. The KIT-5 mesoporous silica materials possess cage-type pore geometry while the AISBA-15 adsorbent has mesopores of cylindrical type with rather large diameter (9.7 nm). Adsorption of lysozyme onto AISBA-15 aluminosilicate obeys a Langmuir isotherm, resulting in pore occupation of 25 to 30%. In contrast, the KIT-5 adsorbents showed very small adsorption capacities for the lysozyme adsorption, typically falling in 6 to 13% of pore occupation. The cage-type KIT-5 adsorbents have narrow channel (4 to 6 nm) where penetration of the lysozyme (3 x 3 x 4.5 nm) might be restricted. The KIT-5 adsorbent tends to collapse after long-time immersion in water, as indicated by XRD patterns, while the AISBA-15 adsorbent retains its regular structure even after immersion in basic water for 4 days. These facts confirm superiority of the AISBA-15 as an adsorbent as compared with the KIT-5 mesoporous silicates. This research strikingly demonstrates the selection of mesoporous materials is crucial to achieve efficient immobilization of biomaterials in aqueous environment.  相似文献   

7.
Micro-domains of modified surface potential (SP) were created on hydroxyapatite films by direct patterning by mid-energy focused electron beam, typically available as a microprobe of Scanning Electron Microscopes. The SP distribution of these patterns has been studied on sub-micrometer scale by the Kelvin Probe Force Microscopy method as well as lysozyme adsorption. Since the lysozyme is positively charged at physiological pH, it allows us to track positively and negatively charged areas of the SP patterns. Distribution of the adsorbed proteins over the domains was in good agreement with the observed SP patterns.  相似文献   

8.
Contribution of metal ion precipitation to the adsorption of Co2+ ions from aqueous solutions onto sepiolite has been analyzed as a function of pH. Abstraction and precipitation isotherms are constructed to isolate the precipitation of cobalt from the real adsorption. The contribution of all cobalt species against pH is calculated from the available solubility products or acid constants. It is found that at pH 8.2, which is the onset of cobalt hydroxide precipitation, the distribution of adsorbed cobalt species is as follows: 92% Co2+, 7% CoOH+ and 1% Co(OH)2. The experimental values are in accord with the calculated uptake of cobalt species onto sepiolite. Adsorption of cobalt ions onto sepiolite before precipitation of cobalt is governed by ion exchange between the released Mg2+ ions from sepiolite matrix and those adsorbed Co2+ ions; this behavior differs from typical oxide (titanium dioxide) and silicate (quartz) minerals. However, adsorption of cobalt onto the same materials including sepiolite follows the same trend after the region of cobalt precipitation despite distinct differences in their charge profiles.  相似文献   

9.
Interaction of mineral talc as an inert carrier with bioactive species (salicylic acid, glycerol, olive oil) in a mechanochemical process was studied by FTIR spectroscopy. Reaction of the talc silicate hydroxyls with carboxyl or alcohol moieties was observed for all the species studied. Dispersed layered composites, built from the silicate (talc) matrix, to which a bioactive component is bound, are formed in this interaction on the time scale of 1–5 min. The formation of new materials viz. layered dispersed mechano-composites proceeds due to etherification or esterification of the active sites on the silicate surface with acids or alcohols.  相似文献   

10.
可生物降解性聚合物一层状硅酸盐纳米复合材料比聚合物基体有更好的力学强度、热稳定性、热变形温度、气体阻隔特性和更快的降解速率,表现出剪切变稀、模量升高、似固体行为等流变特性。文中综述了可生物降解性聚合物纳米复合材料的制备方法、表征手段、性能测试及其应用等方面的研究进展。  相似文献   

11.
New poly(butylene succinate) (PBS)/layered silicate nanocomposites have been successfully prepared by simple melt extrusion of PBS and octadecylammonium modified montmorillonite (C18-mmt) at 150 degrees C. The d-spacing of both C18-mmt and intercalated nanocomposites was investigated by wide-angle X-ray diffraction analysis. Bright-field transmission electron microscopic study showed several stacked silicate layers with random orientation in the PBS matrix. The intercalated nanocomposites exhibited remarkable improvement of mechanical properties in both solid and melt states as compared with that of PBS matrix without clay.  相似文献   

12.
Electrochemical behavior of two electron redox system, phenosafranine (PS+) adsorbed on to micro- and mesoporous materials is investigated by cyclic voltammetry and differential pulse voltammetry using modified micro- and mesoporous host electrodes. Two redox peaks were observed when phenosafranine is adsorbed on the surface of microporous materials zeolite-Y and ZSM-5. However, only a single redox peak was observed in the modified electrode with phenosafranine encapsulated into the mesoporous material MCM-41 and when adsorbed on the external surface of silica. The observed redox peaks for the modified electrodes with zeolite-Y and ZSM-5 host are suggested to be primarily due to consecutive two electron processes. The peak separation ΔE and peak potential of phenosafranine adsorbed on zeolite-Y and ZSM-5 were found to be influenced by the pH of the electrolyte solution. The variation of the peak current in the cyclic voltammogram and differential pulse voltammetry with scan rate shows that electrodic processes are controlled by the nature of the surface of the host material. The heterogeneous electron transfer rate constants for phenosafranine adsorbed on to micro- and mesoporous materials were calculated using the Laviron model. Higher rate constant observed for the dye encapsulated into the MCM-41 indicates that the one-dimensional channel of the mesoporous material provides a more facile micro-environment for phenosafranine for the electron transfer reaction as compared to the microporous silicate materials. The stability of the modified electrode surface was investigated by multisweep cyclic voltammetry.  相似文献   

13.
Indium tin oxide electrodes were modified with DNA, and the guanines in the immobilized nucleic acid were used as a substrate for electrocatalytic oxidation by Ru(bpy)3(3+) (bpy = 2,2'-bipyridine). Nucleic acids were deposited onto 12.6-mm2 electrodes from 9:1 DMF/water mixtures buffered with sodium acetate. The DNA appeared to denature in the presence of DMF, leading to adsorption of single-stranded DNA. The nucleic acid was not removed by vigorous washing or heating the electrodes in water, although incubation in phosphate buffer overnight liberated the adsorbed biomolecule. Acquisition of cyclic voltammograms or chronoamperomograms of Ru(bpy)3(2+) at the modified electrodes produced catalytic signals indicative of oxidation of the immobilized guanine by Ru(III). The electrocatalytic current was a linear function of the extent of modification with a slope of 0.5 microA/pmol of adsorbed guanine; integration of the current-time traces gave 2.2+/-0.4 electrons/guanine molecule. Use of long DNA strands therefore gave steep responses in terms of the quantity of adsorbed DNA strand. For example, electrodes modified with a 1497-bp PCR product from the HER-2 gene produced detectable catalytic currents when as little as 550 amol of strand was adsorbed, giving a sensitivity of 44 amol/mm2.  相似文献   

14.
The aim of this work was to study the structure and mechanical properties of spent polyamide-12 and spent polyamide-12/layered silicate reinforced novel nanocomposites. Layered silicate at 1, 3, 5 and 7 wt.% was incorporated in spent polyamide-12 and its nanocomposites were prepared using single screw injection moulding technique. The interlamellar structure and surface morphology were characterised by transmission electron microscope (TEM) and scanning electron microscope (SEM). Different levels of layered silicate dispersion (as characterised by TEM and SEM) correlated strongly with improvements in mechanical performance. The results showed that the tensile and flexural properties are found to be increased with the incorporation of layered silicate into spent PA-12 matrix. Comparison of tensile and flexural test results between virgin PA-12, spent PA-12 and spent PA-12 nanocomposites showed that spent PA-12 samples have retained 70% of its tensile and 80% of its flexural properties respectively, compared to virgin PA-12.  相似文献   

15.
Recently, nanofibrillated cellulose with cationic functional groups was synthesized. This trimethylammonium-modified nanofibrillated cellulose (TMA-NFC) was applied in this study for the preparation of composites with various layered silicates. These belonged to the groups of montmorillonite, kaolin, talc, vermiculite, and mica. The respective composites were prepared by high-shear homogenization followed by filtration and hot-pressing. Data on crystal structures, chemical compositions, cation exchange capacity, specific surface area, density, and morphology of all clays and micas themselves as well as structure information of the corresponding composites have been collected. Possible microstructural features responsible for the composite appearances were tentatively identified. Principally, the interactions between TMA-NFC and the layered silicates were pronounced, due to electrostatic attraction of cationic cellulose fibrils and anionic silicate layers. This mutual interaction between TMA-NFC and layered silicate, however, was influenced not only by layered silicate properties but also by the composite preparation method, as discussed in this study.  相似文献   

16.
Our continuing research on the preparation, characterization, materials properties, and biodegradability of polylactide (PLA)/organically modified layered silicate (OMLS) nanocomposites has yielded results on PLA/montmorillonite nanocomposites. Montmorillonite (mmt) modified with dimethyldioctadecylammonium cation was used as an OMLS for nanocomposite preparation. The internal structure of nanocomposites on the nanometer scale was established with the use of wide-angle X-ray diffraction patterns and transmission electron micrographic observation. All nanocomposites exhibited significant improvement in crystallization behavior, mechanical properties, flexural properties, heat distortion temperature, and O2 gas permeability when compared with pure PLA.  相似文献   

17.
Ibuprofen loaded poly(ε-caprolactone) (PCL) layered silicate nanocomposites were prepared by hot-melt extrusion. The morphology and extent of dispersion of ibuprofen and layered silicate was studied using a combination of wide-angle X-ray diffraction (WAXD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). Exhaustive examination across the length scales revealed the composite to have both an intercalated and exfoliated morphology. The ibuprofen was well dispersed and distributed throughout the PCL matrix. Most significantly, the static tensile and dynamic mechanical properties of PCL can be manipulated as a function of nanoclay loading and is dependent on the aspect ratio of clay platelets. The glass transition of PCL increased by up to 16°C on addition of nanoclay, as determined from dynamic mechanical thermal analysis (DMTA). This behaviour was attributed to the constrained mobility of PCL chains intercalated between clay platelets and to the tethering of PCL chains by hydrogen bonding with platelet edges. As a consequence, PCL crystallisation was inhibited and confirmed from non-isothermal crystallisation experiments using differential scanning calorimetry (DSC). The fraction of PCL that was crystalline (Xc) decreased by 15% on addition of ibuprofen and nanoclay, although the temperature of crystallisation (Tc) did not change significantly. The dissolution of ibuprofen from PCL can be retarded by addition of layered silicates (nanoclays) to the polymer matrix.  相似文献   

18.
插层复合法制备聚合物/粘土纳米复合材料研究进展   总被引:3,自引:0,他引:3  
黄俊超  朱子康  印杰 《功能材料》2000,31(6):580-583
本文对聚合物/粘土纳米复合材料的合成、结构、性能和增强机理进行了评述。粘土经有机化处理和聚合物复合后的材料显示出与众不同的性能,它的硬度、力学强度、阻隔性能、热稳定性能和阻燃性能有显著改善,聚合物/粘土纳米复合材料有着广泛的应用前景。  相似文献   

19.
The electron spectra of organic dye molecules adsorbed in silicate porous glass were modified by preliminary chemical hydrophobization of the pore surface. A comparative study was made of the absorption spectra of various laser dyes introduced in modified and initial unmodified porous glasses. Pis’ma Zh. Tekh. Fiz. 25, 78–82 (January 26, 1999)  相似文献   

20.
Nanocomposites are a new class of composites in which the reinforcing phase dimensions are on the order of nanometer scale. In particular, the layered silicates are considered to be good candidates for the preparation of polymer-inorganic nanocomposites. The mechanical and thermal properties of polymer can be altered by adding a few vol% of the nano-particles. The effect of the nano-sized particles on thermophysical properties such as melting and crystallization, coefficient of thermal expansion, and thermal conductivity was studied. After preparing the PEMA/layered silicate nanocomposites, the thermophysical properties were investigated by the differential scanning calorimetry and 3 methods. The content of layered silicate was varied from 0.5 to 5 vol%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号