首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CuInSe2 (CIS) thin films were prepared by ion beam sputtering deposition of copper layer, indium layer and selenium layer on BK7 glass substrates followed by annealing at different temperatures for 1 h in the same vacuum chamber. The influence of annealing temperature (100-400 °C) on the structural, optical and electrical properties of CIS thin films was investigated. X-ray diffraction (XRD) analysis revealed that CIS thin films exhibit chalcopyrite phase and preferential (112) orientation when the annealing temperature is over 300 °C. Both XRD and Raman show that the crystalline quality of CIS thin film and the grain size increase with increasing annealing temperature. The reduction of the stoichiometry deviation during the deposition of CIS thin films is achieved and the elemental composition of Cu, In and Se in the sample annealed at 400 °C is very near to the stoichiometric ratio of 1:1:2. This sample also has an optical energy band gap of about 1.05 eV, a high absorption coefficient of 105 cm−1 and a resistivity of about 0.01 Ω cm.  相似文献   

2.
Low-temperature atomic layer deposition (ALD) processes are intensely looked for to extend the usability of the technique to applications where sensitive substrates such as polymers or biological materials need to be coated by high-quality thin films. A preferred film orientation, on the other hand, is often required to enhance the desired film properties. Here we demonstrate that smooth, crystalline ZnO thin films can be deposited from diethylzinc and water by ALD even at room temperature. The depositions were carried out on Si(100) substrates in the temperature range from 23 to 140 °C. Highly c-axis-oriented films were realized at temperatures below ~ 80 °C. The film crystallinity could be further enhanced by post-deposition annealing under O2 or N2 atmosphere at 400-600 °C while keeping the original film orientation intact.  相似文献   

3.
Tin doped indium oxide (ITO) thin films with composition of 9.42 wt% SnO2 and 89.75 wt% In2O3, and impurities balanced on glass substrates at room temperature have been prepared by electron beam evaporation technique and then were annealed in air at different temperatures from 350 to 550 °C for 1 h. XRD pattern showed that increasing annealing temperature increased the crystallinity of thin films and at 550 °C high quality crystalline thin films with grain size of about 37 nm were obtained. Conductivity of ITO thin films was increased by increasing annealing temperature and conductivity obtained results in 350-550 °C temperature range were also excellently fitted in both Arrhenius-type and Davis-Mott variable-range hopping conductivity models. The UV-vis transmittance spectra were also confirmed that the annealing temperature has significant effect on the transparency of thin films. The highest transparency over the visible wavelength region of spectrum (93%) obtained at 550 °C on annealing temperature. It should be noted that this thin film was deposited on substrate at room temperature. This result obtained is equivalent with those values that have already been reported but with high-level (20 wt%) tin doped indium oxide thin films and also at 350 °C substrate temperature. The allowed direct band gap at the temperature range 350-550 °C was estimated to be in the range 3.85-3.97 eV. Band gap widening with an increase in annealing temperature was observed and is explained on the basis of Burstein-Moss shift. A comparison between the electron beam evaporation and other deposition techniques showed that the better figure of merit value can be obtained by the former technique. At the end we have compared our results with other techniques.  相似文献   

4.
We investigated the cyrstalline quality of Ge thin films vacuum deposited on heated (100) GaAs substrates. Ge was evaporated using an electron beam and deposited to thicknesses of 100 and 500 nm, which were measured by a Dektak stylus-type instrument. These results were compared with the predictions of a cosine distribution law derived for the deposition system and found to be in relatively good agreement. The crystalline quality of the films was studied using scanning electron microscopy. Results have shown that epitaxy was strongly dependent on the substrate temperature, surface cleanliness and post-deposition annealing. Epitaxy was reproducibly achieved at a substrate temperature ofT s=450 °C. All films deposited atT s=350 or 400 °C were polycrystalline or amorphous, except one grown atT s=350 °C, which proved to be monocrystalline. It is speculated that an anomalously clean and smooth substrate surface was responsible for this crystalline quality of films. In addition, it has been shown that post-deposition annealing of the films improved their crystallinity.  相似文献   

5.
Hysteresis-free hafnium oxide films were fabricated by atomic layer deposition at 90 °C without any post-deposition annealing, and their structures and properties were compared with films deposited at 150 °C and 250 °C. The refractivity, bandgap, dielectric constant and leakage current density all increase with deposition temperature, while the growth rate and breakdown field decrease. All films are amorphous with roughly the same composition. Although the thin films deposited at the above-mentioned temperatures all show negligible hysteresis, only the 90 °C-deposited films remain hysteresis-free when the film thickness increases. The 90 °C-deposited films remain hysteresis-free after annealing at 300 °C. The hysteresis in films deposited at high temperatures increases with deposition temperature. Evidences show such hysteresis originates in the HfO2 film instead of the interface. Based on a careful structure analysis, middle-range order is suggested to influence the trap density in the films. HfO2 films deposited at low temperature with negligible hysteresis and excellent electrical properties have great potential for the fabrication and integration of devices based on non-silicon channel materials and in applications as tunneling and blocking layers in memory devices.  相似文献   

6.
In this study, nanocolumnar zinc oxide thin films were catalyst-free electrodeposited directly on n-Si and p-Si substrates, what makes an important junction for optoelectronic devices. We demonstrate that ZnO thin films can be grown on Si at low cathodic potential by electrochemical synthesis. The scanning electron microscopy SEM showed that the ZnO thin films consist of nanocolumns with radius of about 150 nm on n-Si and 200 nm on p-Si substrates, possess uniform size distribution and fully covers surfaces. X-ray diffraction (XRD) measurements show that the films are crystalline material and are preferably grown along (0 0 2) direction. The impact of thermal annealing in the temperature range of 150-800 °C on ZnO film properties has been carried out. Low-temperature photoluminescence (PL) spectra of the as-prepared ZnO/Si samples show the extremely high intensity of the near bandgap luminescence along with the absence of visible emission. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments, however, the luminescence intensity was found to decrease at higher annealing temperatures (800 °C). The obtained results indicate that electrodeposition is an efficient low-temperature technique for the growth of high-quality and crystallographically oriented ZnO thin films on n-Si and p-Si substrates for device applications.  相似文献   

7.
Ultrathin films (5 nm, 10 nm and 20 nm effective thickness) of WO3 have been deposited in high vacuum (10− 6 Torr) onto single crystal Si(100) substrates and studied with X-ray diffraction, atomic force microscopy, scanning tunneling microscopy and spectroscopy. The experiments have been carried out on “as-deposited” thin films or after 1 h post-deposition annealing at various temperatures (ranging from 300 °C to 500 °C). A size induced increase of the amorphous to crystalline (monoclinic) phase transition has been observed for the 5 nm and 10 nm films, with a critical crystallite size of 25 ± 5 nm and a critical temperature of 345 ± 5 °C. All the experimental evidences show that, upon annealing, there is a diffusion limited aggregation growth of WO3 that forms large flat two-dimensional islands composed by aggregates of individual crystallites approximately uniform in size and shape. These islands are isolated in the 5 nm thin films, are connected in the 10 nm case and form a uniform patchwork in the 20 nm thin films. Scanning tunneling spectroscopy shows the opening of a large surface band gap (2.7 eV) in the 500 °C annealed films and the significant presence of in gap states for thin films prepared with a lower (below 400 °C) annealing temperature. These findings are discussed in view of the optimization of the best morphological, structural and electronic parameters to fabricate WO3 gas sensing devices at the sub-micrometer length scale.  相似文献   

8.
B.L. Zhu  X.Z. Zhao  G.H. Li  J. Wu 《Vacuum》2010,84(11):1280-870
ZnO thin films were deposited on glass substrates at room temperature (RT) ∼500 °C by pulsed laser deposition (PLD) technique and then were annealed at 150-450 °C in air. The effects of annealing temperature on the microstructure and optical properties of the thin films deposited at each substrate temperature were investigated by XRD, SEM, transmittance spectra, and photoluminescence (PL). The results showed that the c-axis orientation of ZnO thin films was not destroyed by annealing treatments; the grain size increased and stress relaxed for the films deposited at 200-500 °C, and thin films densified for the films deposited at RT with increasing annealing temperature. The transmittance spectra indicated that Eg of thin films showed a decreased trend with annealing temperature. From the PL measurements, there was a general trend, that is UV emission enhanced with lower annealing temperature and disappeared at higher annealing temperature for the films deposited at 200-500 °C; no UV emission was observed for the films deposited at RT regardless of annealing treatment. Improvement of grain size and stoichiometric ratio with annealing temperature can be attributed to the enhancement of UV emission, but the adsorbed oxygen species on the surface and grain boundary of films are thought to contribute the annihilation of UV emission. It seems that annealing at lower temperature in air is an effective method to improve the UV emission for thin films deposited on glass substrate at substrate temperature above RT.  相似文献   

9.
TiO2 thin films were prepared by DC reactive magnetron sputtering in a mixture of oxygen and argon on glass and oxidized silicon substrates. The effect of post-deposition annealing (300 °C, 500 °C and 700 °C for 8 h in air) on the structural and morphological properties of TiO2 thin films is presented. In addition, the effect of Pt surface modification (1, 3 and 5 nm) on hydrogen sensing was studied. XRD patterns have shown that in the range of annealing temperatures from 300 °C to 500 °C crystallization starts and the thin film structure changes from amorphous to polycrystalline (anatase phase). In the case of samples on glass substrate, optical transmittance spectra were recorded. TiO2 thin films were tested as sensors of hydrogen at concentrations 10,000-1000 ppm and operating temperatures within the 180-200 °C range. The samples with 1 nm and in particular with 3 nm of Pt on the surface responded to hydrogen fast and with high sensitivity.  相似文献   

10.
BiFeO3 (BFO) films were grown on LaNiO3-coated Si substrate by a RF magnetron sputtering system at temperatures in the range of 300-700 °C. X-ray reflectivity and high-resolution diffraction measurements were employed to characterize the microstructure of these films. For a substrate temperature below 300 °C and at 700 °C only partially crystalline films and completely randomly polycrystalline films were grown, whereas highly (001)-orientated BFO film was obtained for a substrate temperature in the range of 400-600 °C. The crystalline quality of BFO thin films increase as the deposition temperature increase except for the film deposited at 700 °C. The fitted result from X-ray reflectivity curves show that the densities of the BFO films are slightly less than their bulk values. For the BFO films deposited at 300-600 °C, the higher the deposition temperature, the larger the remnant polarization and surface roughness of the films present.  相似文献   

11.
Zinc oxide (ZnO) thin films were deposited by thermal evaporation of a high quality ZnO powder; the obtained films were then oxidized in the air. We have systematically investigated the influence of annealing temperature ranged from 100 to 400 °C on the films composition and structural and optical properties by using Rutherford Back Scattering (RBS) analysis, X-ray Diffraction (XRD) and UV-Visible transmission respectively. The as grown films exhibit a hexagonal single phase of Zn with no preferential orientation and contain 28% oxygen. With an increase in the annealing temperature the oxygen content is enhanced to the detriment of Zn; samples were totally oxidized at 300 °C and the films are converted to stoichiometric ZnO material. However, in situ XRD pattern analysis shows that the oxidation starts at 250 °C. From the XRD results of annealed Zn samples under an electrical field we inferred that the oxidation mechanism is achieved by the ionization of oxygen atom at the film surface and subsequently followed by the diffusion of the produced ions in the film network.  相似文献   

12.
Polycrystalline thin films of cadmium stannate (Cd2SnO4) were deposited by spray pyrolysis method on the Corning substrates at substrate temperature of 525 °C. Further, the films were annealed at 600 °C in vacuum for 30 min. These films were characterized for their structural, electrical and optical properties. The experimental results showed that the post-deposition annealing in vacuum has a significant influence on the properties of the films. The average grain size of the film was increased from 27.3 to 35.0 nm on heat treatment. The average optical transmittance in the visible region (500-850 nm) is decreased from 81.4% to 73.4% after annealing in vacuum. The minimum resistivity achieved in the present study for the vacuum annealed films is the lowest among the reported values for the Cd2SnO4 thin films prepared by spray pyrolysis method.  相似文献   

13.
SrSnO3 thin films were prepared by pulsed laser deposition on amorphous silica and single crystal substrates of R-sapphire, (100)LaAlO3 and (100)SrTiO3. High quality epitaxial (100) oriented films were obtained on LaAlO3 and SrTiO3 while a texture was revealed for films on sapphire deposited at the same deposition temperature of 700 °C. Amorphous films were obtained on silica but a post annealing at 800 °C induced crystallization with a random orientation. The screening of deposition temperature showed epitaxial features on SrTiO3 from 650 °C while no crystallization was observed at 600 °C. The influence of substrate and deposition temperature was confirmed by Scanning Electron Microscopy and Atomic Force Microscopy observations.  相似文献   

14.
S.H. Mohamed  S. Venkataraj 《Vacuum》2007,81(5):636-643
Thin films of MoO3 were prepared on quartz and Si (1 0 0) substrates by reactive dc magnetron sputtering of a Mo target in an oxygen and argon atmosphere. The structural and optical changes induced in the films due to post-growth annealing have been systematically studied by Rutherford backscattering (RBS), X-ray diffraction (XRD), X-ray reflectivity (XRR) and by optical methods. RBS studies reveal no change in composition of the films upon annealing at high temperatures. Grazing angle XRD studies show that the as-deposited films are amorphous and crystallize to β-MoO3 phase with small contribution of α-MoO3 upon annealing at 300 °C. The film prepared at 0.40 Pa transforms to α-MoO3 upon annealing at 650 °C, while the film deposited at 0.19 Pa still has some β-MoO3 phase contribution. XRR measurements reveal that the film thickness decreases upon annealing with simultaneous increase of film density. The surface roughness of the films strongly increases after crystallization. The contraction of the film deposited at 0.40 Pa is much greater than the contraction of the film prepared at 0.19 Pa. The mass variation of the film deposited at 0.19 Pa and that deposited at 0.40 Pa are completely different. The optical properties of MoO3 films deposited at 0.19 and 0.40 Pa are changed strongly by annealing.  相似文献   

15.
Q. Ye  Z.F. Tang  L. Zhai 《Vacuum》2007,81(5):627-631
Microstructure and hydrophilicity of nano-titanium dioxide (TiO2) thin films, deposited by radio frequency magnetron sputtering, annealed at different temperatures, were studied by field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and water contact angle methods. It is found that the crystal phase transforms from amorphous to rutile structure with increase of annealing temperature from room temperature to 800 °C. It is also indicated that the organic contaminants on the surface of the films can be removed and the oxygen vacancies can be reduced by the annealing treatment. Annealed at the temperature below 300 °C, amorphous TiO2 thin films show rather poor hydrophilicity, and annealed at the temperature range from 400 to 650 °C, the super hydrophilicity anatase of TiO2 thin films can be observed. However, when the annealing temperature reaches 800 °C, the hydrophilicity of the films declines mainly derived from the appearance of rutile.  相似文献   

16.
Mn1.85Co0.3Ni0.85O4 (MCN) thin films were prepared on Al2O3 substrates by chemical solution deposition method at different annealing temperature (650, 700, 750 and 800 °C). Effects of annealing temperature on microstructure and electrical properties of MCN thin films were investigated. The MCN thin film annealed at 750 °C is of good crystallization and compact surface. It shows lower resistance (4.8 MΩ) and higher sensitivity (3720.6 K) than those of other prepared films. It also has small aging coefficient (3.7%) after aging at 150 °C for 360 h. The advantages of good properties make MCN thin film very promising for integrated devices.  相似文献   

17.
Titanium dioxide thin films were deposited on crystalline silicon (100) and fused quartz substrates by spray pyrolysis (SP) of an aerosol, generated ultrasonically, of titanium diisopropoxide. The evolution of the crystallization, studied by X-ray diffraction (XRD), atomic force (AFM) and scanning electron microscopy (SEM), reflection and transmission spectroscopies, shows that the deposition process is nearly close to the classical chemical vapor deposition (CVD) technique, producing films with smooth surface and good crystalline properties. At deposition temperatures below 400 °C, the films grow in amorphous phase with a flat surface (roughness∼0.5 nm); while for equal or higher values to this temperature, the films develop a crystalline phase corresponding to the TiO2 anatase phase and the surface roughness is increased. After annealing at 750 °C, the samples deposited on Si show a transition to the rutile phase oriented in (111) direction, while for those films deposited on fused quartz no phase transition is observed.  相似文献   

18.
We have investigated as grown and annealed (300 °C, 400 °C and 500 °C) thin films of CdS grown on GaAs (001) by chemical bath deposition. X-ray diffraction (XRD) shows that the as grown CdS film is polycrystalline and predominantly cubic. A residual compressive stress of the order of 1.45% in the as grown film relaxes on annealing the film at 300 °C. Furthermore, CdS film undergoes a structural phase transition from the metastable cubic phase to the stable hexagonal phase, when, annealed at 500 °C. This is accompanied by significant improvement in crystalline quality of the film. Line shape analysis of the asymmetry of the longitudinal optical phonon shows a disorder-activated mode, which correlates well with the crystalline quality estimated from XRD and photoluminescence measurements. The additional features observed in the Raman spectra ∼ 254 cm− 1 and 309 cm− 1 are investigated using temperature dependent Raman spectroscopy and identified as superposition of transverse optical: E1 (TO) and E2 phonons at q = 0 and combination mode (two zone-edge E2 phonons) respectively.  相似文献   

19.
Jun Xu  Guo Jin 《Vacuum》2009,84(4):478-1215
Ni thin films with an intermediate layer of Cr were prepared by using dc magnetron sputtering under different conditions. Effects of deposition temperature, post-deposition annealing on the microstructure and the electrical characteristics were investigated. The relationship between film microstructure and its resistivity was analyzed. It was found that the crystal grains aggregated into large ones when the deposition temperature reached or exceeded 150 °C. This could be explained that high deposition temperature conduced high activation energy, which increased surface mobility of the adatoms. Annealing treatments resulted in the densification of the films. Resistivity of the films strongly depended on grain size and crystallinity. The influence of Cr intermediate layer on the resistivity was also discussed. Compared to annealing treatment, the deposition temperature exhibited larger controlling effect on film resistivity.  相似文献   

20.
A. Brudnik  M. Radecka  K. Zakrzewska 《Vacuum》2008,82(10):936-941
In this work, we have chosen oxidation of TiN thin films as a feasible method for preparation of nitrogen-doped titanium dioxide thin films, TiO2:N, for photocatalytic applications. DC reactive magnetron sputtering with the plasma emission control was used for deposition of stoichiometric TiN thin films. The microstructure and chemical composition of films before and after oxidation were investigated by means of RBS, X-ray diffraction (XRD) in grazing incidence diffraction (GID) configuration, AFM and XPS techniques. The electrical conductivity was measured by the van der Pauw method as a function of the oxidation temperature. The optical transmittance and reflectance spectra of the films were measured over the visible and UV ranges of the light spectrum. GID diffraction patterns of as-sputtered TiN thin films and those after oxidation indicate that TiO2 rutile is formed at around 300 °C. Nitrogen is still present as indicated by XPS studies even when XRD detects the rutile only. Optical absorption of thin films oxidized at 450 °C is shifted towards the visible range of the light spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号