首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have successfully fabricated ordered crystalline Ag2S nanowire arrays by direct current electrodeposition into the nanochannels of porous anodic aluminum oxide templates from a dimethylsulfoxide solution containing AgNO3 and elemental S. X-ray diffraction and the selected area electron diffraction investigations demonstrate that the Ag2S nanowires are a uniform actanthite structure. Electromicroscopy results show that the nanowires are quite ordered with diameters of about 40 nm and lengths up to 5 μm. X-ray energy dispersion analysis indicates that the atomic composition of Ag and S is very close to a 2:1 stoichiometry. Furthermore, a possible mechanism for the formation of the Ag2S nanowires is proposed.  相似文献   

2.
Ag2S quantum dots (QDs) were deposited on ordered TiO2 nanotube arrays (TNTAs) using a sequential chemical bath deposition (S-CBD) approach. AgNO3 and thiourea were used as the precursor materials of Ag+ and S2− ions, respectively. The decoration of Ag2S QDs significantly shifted the absorption spectrum of the TNTAs to visible light region. As a result, Ag2S QDs-sensitized TNTAs exhibited much higher photocurrent density than pure TNTAs under visible light irradiation.  相似文献   

3.
High-aspect-ratio of worm-like Ag2S nanocrystal with length up to several micrometers and a diameter of 25-50 nm has been successfully prepared by a Triton X-100/cyclohexane/hexanol/water W/O reverse microemulsion in the presence of TAA (Thioacetamide) as a sulfur source and EDTA (ethylene diamine tetraacetic acid) as a chelating ligand. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and UV-vis diffuse reflectance absorption spectra. The results indicate that the morphology and size of Ag2S nanocrystal can be readily controlled by modulating the mole ratio of Ag+ to EDTA, the molar ratio of water to surfactant (ω0), and the aging time.  相似文献   

4.
Thin films of Ag2S are prepared on glass and quartz substrates by a thermal evaporation method. The structural studies show that the films are well crystallized with an acanthite structure. The optical properties of the films are investigated using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 500-2200 nm. The refractive index, n, and the absorption index, k, of Ag2S are determined from the absolute values of the measured transmittance and reflectance. The dispersion of refractive index in Ag2S is analyzed using the concept of the single oscillator. Within this concept the oscillator energy, E0, and the dispersion energy, Ed, can be determined as 5 and 32.5 eV, respectively. It is interesting to note that Ag2S appears to fall into the ionic class. The values of the lattice dielectric constant and the ratio of the carrier concentration to the effective mass are also determined as 7.77 and 1.7×1047 kg−1 m−3, respectively. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals an indirect allowed transition with a band gap of 0.96 eV and associated phonons of 0.05 eV. Measurements of the dark electrical resistivity is studied as a function of film thickness and temperature. The dark electrical resistivity decreases with increasing film thickness. Graphical representation of log ρ as a function of reciprocal temperature yields two distinct linear parts indicating the existence of two activation energies ΔE1 and ΔE2 as 0.18 and 0.28 eV respectively. Discussion on the obtained results and their comparison with the previous published data is also given.  相似文献   

5.
In this paper we report on the synthetic investigation of single-crystalline aluminum borate (Al4B2O9) nanowires in large scale by a direct calcination of a precursor powder made of Na2B4O7·10H2O and Al (NO3)3·9H2O at a low temperature of 850 °C. The nanowires, with the diameter of 20-40 nm and the length up to several micrometers, possess smooth surfaces and uniform sizes along the entire wire. The growth mechanism of the nanowires is attributed to a solid-liquid-solid process, which controls the nanowire morphology.  相似文献   

6.
In this paper, a simple solution-based method has been applied to fabricate metal chalcogenide nanostructures. Abundant Cu2S nanowires on Cu substrates are successfully prepared through the in-situ hydrothermal reaction between sulfur powder and Cu foil. It is observed that the addition of hydrazine and cetyltrimethylammonium bromide plays an important role in the growth of Cu2S nanowires. A rolling-up mechanism of metal chalcogenide film is used to illustrate the growth of these nanostructures. UV-vis spectrum of Cu2S nanowires reveals obvious absorption below the wavelength of 900 nm. The calculated band gap of Cu2S nanowires (1.5 eV) shows obvious blue shift because of the quantum size effect.  相似文献   

7.
Homogeneous precipitation method for synthesizing (Gd0.99,Pr0.01)2O2S sub-microphosphor was developed, using the commercially available Gd2O3, Pr6O11, H2SO4 and (NH2)2CO (urea) as the starting materials. It was found that the as-synthesized precursor is mainly composed of (Gd0.99,Pr0.01)2(OH)2(CO3)(SO4nH2O. Pure quasi-spherical shaped (Gd0.99,Pr0.01)2O2S particles can be synthesized by calcining the precursor at a temperature higher than 700 °C for 1 h in flowing hydrogen. The (Gd0.99,Pr0.01)2O2S particles have a narrow size distribution with a mean grain size of about 300-400 nm. Photoluminescence spectra of (Gd0.99,Pr0.01)2O2S under 303 nm UV excitation show a green emission at 515 nm as the most prominent peak, which corresponds to the 3P0 → 3H4 transition of Pr3+ ions. Decay study reveals that the 3P0 → 3H4 transition of Pr3+ ions in Gd2O2S host lattice has a single exponential decay behavior.  相似文献   

8.
Well-dispersed Ag2S nanocrystals with size of about 20~30 nm were prepared in distilled water at room temperature with the assistance of imidazoline surfactant quaternary ammonium salt of 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI) prepared in-house. The products were characterized by TEM, XRD, and FT-IR, respectively. The influence of SUDEI concentration on the dispersion of Ag2S products was briefly discussed. Furthermore, the obtained Ag2S nanocrystals product was applied into DNA hybridization analysis, and the results indicated that the detection limit of target ssDNA was up to pmol/L, showing that the DNA probe labeled with Ag2S nanoparticles is of promising application value in electrochemical DNA detection analysis and biosensors.  相似文献   

9.
Crystalline dandelion-like antimony (III) sulfide (Sb2S3) nanowires were synthesized by a PEG-assisted solvothermal process. The orthorhombic crystal structure and dandelion-like multi-branched nanowire morphology were revealed by X-ray diffractometry (XRD) and scanning electron microscopy (SEM) respectively. High-resolution transmission electron microscopy (TEM) identified that the highly crystalline Sb2S3 nanowires grew along the [001] direction with individual wire diameter of 195 ± 52 nm. The band gap of the Sb2S3 nanowires was measured to be ca. 1.67 eV. A combination of PEG-templated assembly and crystal splitting mechanism was likely responsible for the growth of the observed nanowire dandelion structures.  相似文献   

10.
Ag2Cu2O3 thin films were deposited on glass substrates by RF magnetron sputtering of an equiatomic silver-copper target (Ag0.5Cu0.5) in reactive Ar-O2 mixtures. The reactive sputtering was done at varying power, oxygen flow rate and deposition temperature to study the influence of these parameters on the deposition of Ag2Cu2O3 films. The film structure was determined by X-ray diffraction, while the optical properties were examined by spectrophotometry (UV-vis-NIR) and photoluminescence. Furthermore, the film thickness and resistivity were measured by tactile profilometry and 4-point probe, respectively. Additional mobility, resistivity and charge carrier density Hall effect measurements were done on a few selected samples. The best films in terms of stoichiometry and crystallography were achieved with a sputtering power of 100 W, oxygen and argon flow rates of 20 sccm (giving a deposition pressure of 1.21 Pa) and a deposition temperature of 250 °C. The optical transmittance and photoluminescence spectra of films deposited with these parameters indicate several band gaps, most prominently, a direct one of around 2.2 eV. Electrical characterization reveals charge carrier concentrations and mobilities in the range of 1021-1022 cm− 3 and 0.01-0.1 cm2/Vs, respectively.  相似文献   

11.
Eu(BO2)3 nanowires with diameters of 10-20 nm were fabricated through direct sintering Eu(NO3)3·6H2O and H3BO3 with Ag as catalyst. The result of X-ray diffraction (XRD) indicated that the nanowire was single-crystalline with body-centered monoclinic structure. Based on the fact that Ag nanoparticles attached to the tips and middles of nanowires, a vapor-liquid-solid (VLS) growth mechanism of the Eu(BO2)3 nanowires is proposed. Three well-defined stages have been clearly identified during the process: Ag-Eu-B-O cluster process, crystal nucleation, and axial growth. The photoluminescence characteristics under UV excitation were investigated. The dominated Eu3+ orange-red emission corresponding to the magnetic dipole transition 5D0 → 7F1 is centered at 591 nm, indicating that Eu3+ is located at high symmetry crystal field with inversion center.  相似文献   

12.
Ag2O-P2O5 and Ag2O-P2O5-20 wt% CdCl2 glasses were prepared by melt quenching method and characterized with the help of several experimental techniques. Powder X-ray diffraction study indicated that the glasses are amorphous in nature. DSC studies showed that CdCl2 doped glass is chemically more durable. Electrical conductivity and ionic transference number measurements have shown that both the glasses are ionic conductors with Ag+ ions as the charge carriers. The electrical conductivity of the doped glass is found to be higher than the undoped one. Structures of the glasses have been proposed on the basis of IR spectral analysis. From SEM studies it has been inferred that addition of 20 wt% CdCl2 modifies the morphology of Ag2O-P2O5 glass and in its presence formation of clusters composed of nanofibers occur.  相似文献   

13.
Large-scale VO2 nanowires have been synthesized by two-step method. First, we have been obtained (NH4)0.5V2O5 nanowire precursors by hydrothermal treatment of ammonium metavanadate solution at 170 °C. Secondly, the precursors have been sealed in quartz tube in vacuum and annealed to form VO2 nanowires at 570 °C. Scanning electron microscope and transmission electron microscope analysis show that the nanowires have self-assembling nanostructure with the diameter of about 80-200 nm, length up to125 μm. Electrical transport measurements show that it is semiconductor with conduction activate energy of 0.128 eV. A metal-semiconductor transition can be observed around 341 K.  相似文献   

14.
Evaporation of Ag in the presence of an electron cyclotron resonance (ECR) oxygen plasma was used to deposit Ag2−xO films with a range of stoichiometries onto r-plane sapphire substrates. A quartz crystal oscillator (QCO) was used to accurately measure the silver and oxygen arrival rates and establish the O/Ag flux ratio needed to produce films with nominal Ag2O stoichiometry. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis indicates that the Ag2−xO films are not single phase but contain signatures of coexisting Ag2O and AgO components. XRD shows that the lattice matching with the r-plane sapphire substrate causes the Ag2O phase to grow with <002> heteroepitaxial crystallites coexisting with crystallites having <111> normal and random in-plane orientation. The AgO phase also forms with crystallites having <002> heteroepitaxy as well as crystallites with <111> normal and random in-plane orientation. The mixed phase Ag2−xO films exhibit approximately 77% optical transmission over the visible range (500 nm to 700 nm) and have a single absorption edge near 3.3 eV. Four-point van der Pauw conductivity and Hall effect measurements indicate that the Ag2−xO films are p-type with a conductivity on the order of 3 × 10− 3 Ω− 1 cm− 1.  相似文献   

15.
The purpose of this research was to synthesize and characterize gold-coated Fe3O4/SiO2 nanoshells for biomedical applications. Magnetite nanoparticles (NPs) were prepared using co-precipitation method. Smaller particles were synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g−1. For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of 80–100 emu g−1 and coercivity of 80–120 Oe for particles between 35 and 96 nm, respectively. The magnetic NPs were modified with a thin layer of silica using Stober method. Small gold colloids (1–3 nm) were synthesized using Duff method and covered the amino functionalized particle surface. Magnetic and optical properties of gold nanoshells were assessed using Brunauer–Emmett–Teller (BET), vibrating sample magnetometer (VSM), UV–Vis spectrophotometer, atomic and magnetic force microscope (AFM, MFM), and transmission electron microscope (TEM). Based on the X-ray diffraction (XRD) results, three main peaks of Au (1 1 1), (2 0 0) and (2 2 0) were identified. The formation of each layer of a nanoshell is also demonstrated by Fourier transform infrared (FTIR) results. The Fe3O4/SiO2/Au nanostructures, with 85 nm as particle size, exhibited an absorption peak at ∼550 nm with a magnetization value of 1.3 emu g−1 with a specific surface area of 71 m2 g−1.  相似文献   

16.
The thermoelectric properties of the tetradymite-type Bi2−xSbxTe2S solid solution (0 ≤ x ≤ 2) are reported for the temperature range 5-300 K. The properties of non-stoichiometric, Cl and Sn doped n- and p-type variants are reported as well. The Seebeck coefficients for these materials range from −170 to +270 μV K−1 while the resistivities range from those of semimetals, 2 mΩ cm, to semiconductors, >1000 mΩ cm. Thermal conductivities were low for most compositions, typically 1.5 W m−1 K−1. Nominally undoped Bi2Te2S shows the highest thermoelectric efficiency amongst the tested materials with a ZT = 0.26 at 300 K that decreased to 0.04 at 100 K. The crystal structure of Sb2Te2S, a novel tetradymite-type material, is also reported.  相似文献   

17.
TaSi2 nanowires have been synthesized on Si substrate by annealing FeSi2 thin film and NiSi2 films at 950 °C in an ambient containing Ta vapor whose length would be grown up to 13 μm. The metallic TaSi2 nanowires exhibit excellent electrical properties with remarkable high failure current density of 3 × 108 A cm− 2. In addition, the growth mechanism is addressed in detail, The TaSi2 nanowires are formed in three steps: segregation of Si atoms from the FeSi2 thin film and NiSi2 films underlayer to form Si base, growth of TaSi2 nanodots on Si base, and elongation of TaSi2 nanowire along the growth direction. This simple approach promises future applications in nanoelectronics and nano-optoelectronics.  相似文献   

18.
Single crystals of the quaternary single crystals Ag2CdSnS4 were grown for the first time using the horizontal gradient freeze technique. Optical spectral and photoelectric properties of obtained crystals were investigated. The band gap energy at 77 K according to the photoconductivity spectra is 1.94 eV. The energy levels of the major donor centers in the band gap were determined. The role of intrinsic defects in the observed dependences is analyzed. The energy levels of the major donor centers in the band gap were determined. A small photoconductivity maximum at low temperature is observed at wavelength λm = 640 nm (hν ∼ 1.94 eV); situated in the fundamental absorption band, which unambiguously corresponds to the intrinsic origin of photoconductivity. The increase of the extrinsic photoconductivity with the maximum at λm ∼ 800 nm with temperature leads to its domination above 240 K. The observed peculiarity can be explained by the photoexcitation of electrons from the valence band to the donor centers which are empty at high temperatures and with further thermal excitation to the conduction band.  相似文献   

19.
Chalcogenide glasses in the GeS2-Ga2S3-Ag2S pseudo-ternary system were prepared by melt-quenching technique. The structural evolvement of the glasses was studied by Raman spectroscopy. The Raman results show that the addition of Ag2S involves the breaking of [S3Ge-GeS3] ethane-like units and the formation of Ag-S ionic bonds. The results of differential scanning calorimetry (DSC) show that the glasses have relatively high-glass transition temperatures and good thermal stabilities. These GeS2-Ga2S3-Ag2S glasses have a wide range of transmission approximately from 0.50 to 12.5 μm. In addition, with the method of Maker fringe, SHG was observed in the 0.9GeS2-0.05Ga2S3-0.05Ag2S glass irradiated by an electron beam. The value of second-order nonlinear optical susceptibility d is as large as 6.6 pm/V, and the poling mechanism of electron beam irradiation was also discussed in this work.  相似文献   

20.
The Ba2TiSi2O8 is a well known piezoelectric, ferroelectric and non-linear crystal. Nanocrystals of Ba2TiSi2O8 doped with 1.5 Dy3+ have been obtained by thermal treatment of a precursor glass and their optical properties have been studied. X-ray diffraction patterns and optical measurements have been carried out on the precursor glass and glass ceramic samples. The emission spectra corresponding to the Dy3+: 4F9/2 → 6H13/2 (575 nm), 4F9/2 → 6H11/2 (670 nm) and 4F9/2 → 6H9/2 (757 nm) transitions have been obtained under laser excitation at 473 nm. These measurements confirm the incorporation of the Dy3+ ions into the Ba2TiSi2O8 nanocrystals which produces an enhancement of luminescence at 575 nm. At this wavelength has been demonstrated a maximum optical amplification around 1.9 cm−1 (∼8.2 dB/cm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号