首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
详细考察了催化剂种类、催化剂活性和原料性质及反应温度、反应时间、剂/油质量比等工艺条件对催化裂化(FCC)汽油辛烷值的影响,对实际生产中提高汽油辛烷值具有指导意义。  相似文献   

2.
In this paper the influence of admixtures of rapeseed, soybean and palm oil into VGO on FCC performance has been studied. The oils were mixed in steps of 20 wt.% and tested in a fully continuous operated FCC pilot plant. The experiments show that the product distribution changes slightly. Higher ratios of vegetable oils hardly affect the gasoline yields but cause a decrease in cracking gas. Oxygen contained in the vegetable oils is converted predominantly to water. It has been demonstrated that the obtained gasoline is oxygen free and shows improved properties for RON and MON. The cracking gas contains high amounts of propene and ethene, which can be used as base materials for the production of synthetic materials from renewable sources.  相似文献   

3.
介绍了乌石化公司炼油厂800kt/a馏分油催化裂化装置提高柴汽比和汽油辛烷值工业试验情况,通过调整操作条件和汽、柴油切割点,使用增产柴油、提高汽油辛烷值的(CC-200D)催化剂,有效提高了装置柴汽比,柴油收率提高7.419个百分点,轻质油收率提高1.395个百分点,产品分布得到改善,稳定汽油研究法辛烷值提高一个单位左右。  相似文献   

4.
催化裂化汽油馏分芳构化降烯烃研究   总被引:6,自引:1,他引:6  
以75~120 ℃的FCC汽油馏分为原料,在连续固定床反应器上考察了Zn P/HZSM-5催化剂的芳构化反应性能,探讨了工艺条件对芳构化反应的影响以及工业化的可行性。结果表明,Zn-P/HZSM-5催化剂具有很高的活性、稳定性和芳烃选择性。在温度430 ℃、压力0.1 MPa、空速1 h-1的反应条件下,得到了烯烃含量低、芳烃和异构烷烃较协调的汽油调合产品。  相似文献   

5.
Light olefins dimerization to high quality gasoline components   总被引:4,自引:0,他引:4  
New attractive technologies can be designed in the field of light olefins dimerization (C3–C5) in order to obtain products useful as gasoline blending components; the technologies are characterized both by low investment costs and by high product quality. Isobutene dimerization is a powerful alternative to MTBE production whenever the use of the latter will be forbidden in gasoline. Also the dimerization of iso-amylenes and propylene, when properly designed, can give products (both the olefins and the corresponding hydrogenated derivatives) characterized by very high octane numbers. More in general all these technologies can help to debottleneck the FCC downstream when enhanced olefins production is achieved by means of new FCC catalysts and processes.  相似文献   

6.
Demand for propene as a petrochemical building block keeps growing, while its availability has been decreased by the adoption of shale gas resources, among others. Efforts to optimize its production by conventional means (including modified fluid catalytic cracking) and new on-purpose production technologies (including ethene to propene (ETP) and olefin cracking) are being pursued. This work reviews the progress made on olefin conversion processes, including the ETP reaction, which is still under development, and the cracking of butenes and higher olefins (C5–C8). The factors analyzed include the catalytic performance of different zeolite materials and their modifications to increase catalyst stability, yield, and selectivity to propene, as well as the effect of operating conditions, reaction thermodynamics, and mechanisms involved. The work is complemented by a survey of commercial technologies and developments on olefin conversion processes.  相似文献   

7.
A fluidized bed reactor, used for methanol to gasoline (MTG), was designed followed the theory of gas–solid two-phase flow, and the effects of some factors, such as temperature, space velocity and the regeneration process, on the performance of MTG catalyst were systematically examined. The results show that: heat and mass transfer can be effectively conducted in the fluidized bed reactor; with the reaction temperature was increased, the methanol conversion rate maintained at 100% and the yield of gasoline gradually increased, then reached its highest value of 25.22% at 410 °C, after that it began to decline; and the C5 aromatics content increased with temperature and reached its maximum value of 49.86% at 430 °C. With the weight space velocity was increased, the yield of gasoline firstly increased and then decreased, while the C5 aromatics content was decreased; In addition, the effect of inner-regenerated process for used catalyst is very good. Low temperature can help to generate lighter olefin polymer, the higher extent of hydrogen transfer and cracking of large molecules at middle temperature, the carbon deposition reaction and aromatization reaction of low carbon olefin occurred at higher temperature, all of these contributed the above mentioned rules. While the weight space velocity acts on the performance of catalyst mainly via influencing the contact time and the carbon deposition reaction.  相似文献   

8.
介绍了LOG-90型高辛烷值型重油催化裂化催化剂的反应性能,并进行固定流化床评价。结果表明,与对比催化剂相比,优化反应条件后,LOG-90型催化剂重油产率由5.31%降为5.04%,焦炭产率由8.37%升为8.53%,总液体收率由83.27%降为83.15%,丙烯收率由4.06%升为6.32%,研究法辛烷值提高1.14个单位,达到90.64,马达法辛烷值提高0.85个单位,达到82.50。1.2 Mt·a-1催化裂化装置工业应用结果表明,与空白标定相比,总结标定时油浆产率和总液体收率基本相当,汽油研究法辛烷值提高1.57个单位,达到91.5。单柱色谱法与多维色谱法综合分析结果表明,汽油辛烷值增加是芳烃含量与异构烃含量共同增加的结果。  相似文献   

9.
基于流化催化裂化(FCC)轻汽油(初馏点-358 K)中所含烯烃组分的性质,将其划分为4个集总,采用管式滴流床反应器,在压力0.5-2 MPa、反应温度353-413 K、液体空速2.5-7.5 h-1的条件下,对烯烃在镍加氢催化剂上的加氢反应进行宏观动力学研究.实验结果显示:n-C4=,n-C5=,i-C5=,n-C...  相似文献   

10.
费托蜡主要由链烷烃组成,不含硫、氮等杂原子,是生产清洁汽油的优质原料。由于缺少芳烃和环烷烃,费托蜡催化裂化过程需要强化异构化、芳构化反应以实现降低汽油馏分烯烃含量、保持高辛烷值的目标。对费托蜡为原料的催化裂化反应体系进行热力学分析,重点计算了不同温度下生成汽油馏分主要烃类的反应焓变和反应平衡常数。研究结果表明,以大分子链烷烃为主的费托蜡,其裂化吸热反应焓变约为80 kJ/mol,反应平衡常数随温度的升高而增大,高温有利于一次裂化反应。对于异构化反应,主要是大分子链烷烃裂化为烯烃,再由烯烃分子转化为异构烷烃,因此对于异构化反应,可以通过优化反应器促进汽油烯烃的转化。在考察温度范围内,烯烃环化反应平衡常数随温度升高而减小,环烷烃脱氢芳构化反应平衡常数随温度升高而增大,所以适宜的反应温度是制约进一步增加汽油中芳烃的重要因素。  相似文献   

11.
在实验室XTL-5型提升管中试装置上考察了反应温度、剂油质量比和停留时间对苏丹高酸原油催化裂化反应的影响。实验结果表明,在反应温度460℃、停留时间1.15 s、剂油比为6左右的缓和条件下,苏丹高酸原油的重油转化率在90%以上,液收可以达到80%以上。由于原料的残炭质量分数大于8%,导致苏丹达尔原油的直接催化裂化焦炭产率较高。随反应温度的升高和停留时间的延长,转化率不断提高,但汽柴油收率不断下降。随剂油比的增大,汽油产率先升高后降低,柴油收率则不断下降。  相似文献   

12.
To achieve selective hydrodesulfurization (HDS) of fluid catalytic-cracked (FCC) gasoline for producing sulfur-free gasoline (S < 10 ppm), the reactivity of various olefins contained in FCC gasoline on CoMoP/Al2O3 sulfide catalysts was investigated. Isomerization of the CC double bond from the terminal position to an internal position was observed. The steric hindrance around the CC double bond suppresses the reactivity of olefin hydrogenation. The sulfidation temperature of the catalyst has a major influence on olefin hydrogenation active sites. Addition of the appropriate amount of cobalt (Co/Mo ratio approximately 0.6) contributes to the suppression of olefin hydrogenation at high reaction temperature (260 °C). From the comparison of catalytic performance and characterization of our CoMoP/Al2O3 catalyst with an analogous commercial catalyst, it is suggested that the hydrogenation of olefins depends not only on the state of the Mo CUS but also on the steric effects of both olefin structure and MoS2 crystalline structure.  相似文献   

13.
轻汽油在HZSM-5分子筛上催化裂解制丙烯的研究   总被引:1,自引:0,他引:1  
王敏  陈金鹏  王海彦  魏民  马俊 《工业催化》2006,14(11):23-25
以催化裂化轻汽油(≤75 ℃)为原料,在小型固定床反应器上,考察了反应温度、反应空速、催化剂不同硅铝物质的量比及载体Al2O3含量对轻汽油的催化裂解性能及丙烯选择性的影响。实验结果表明,反应温度和空速对催化裂解的产物分布和丙烯收率有较大的影响,高硅铝比催化剂的丙烯选择性比低硅铝比催化剂好,适量Al2O3的添加有助于提高丙烯收率。选择合适的反应条件可以有效提高催化剂的裂化性能并能很好抑制氢转移反应的进行,从而提高丙烯的选择性。在550 ℃、0.2 MPa和空速4 h-1条件下,高硅铝比n(SiO2)∶n(Al2O3)=200]催化剂的丙烯收率为37.56%,当添加30%的Al2O3时,丙烯收率增至38.26%。  相似文献   

14.
以改性USY为催化剂主要载体组分,以Mo-Ni为加氢成分,进行加氢改质催化剂的开发。200 mL一段串联加氢装置评价结果表明,该催化剂具有良好的加氢改质选择性,可满足市场优化柴汽比的需求。在优化工艺条件下,汽油馏分收率达42.3%,研究法辛烷值89.0。当调整切割点时,汽油馏分辛烷值可进一步提高到91.4,是优质的高辛烷值调和组分。柴油馏分的十六烷值提高十个单位以上,硫含量小于10 μg·g-1,是优质的国Ⅴ低硫柴油调和组分。  相似文献   

15.
以L沸石作为活性组分负载Co-Mo氧化物制备了改性L沸石催化剂,并用X射线衍射、BET测试和红外光谱等方法对催化剂进行表征。以全馏分流化催化裂化(FCC)汽油为原料,临氢条件下,在固定床连续微反应装置上对催化剂脱除硫和烯烃的性能进行了评价,考察了n(Co)∶n(Mo)、金属含量、温度、压力、体积空速和氢油比对催化剂反应性能的影响。结果表明,当催化剂中n(Co)∶n(Mo)=1∶2,w(CoO)=2.5%时,在温度320℃、压力1.5 MPa、体积空速4.0 h-1、V(H2)∶V(FCC汽油)=600∶1的条件下,FCC汽油质量脱硫率达92%左右,烯烃体积饱和率42%左右,汽油抗爆指数损失小于1.0个单位,液体质量收率97%~98%,且催化剂的稳定性好。  相似文献   

16.
The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction conditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production. __________ Translated from Chemical Reaction Engineering and Technology, 2006, 22(6): 532–538 [译自: 化学反应工程与工艺]  相似文献   

17.
陈治平  徐建  石冈  范煜  鲍晓军 《化工学报》2014,65(7):2751-2760
采用工业Ni-Mo/Al2O3-HZSM-5催化剂在小型固定床加氢微反装置上对催化裂化(FCC)汽油临氢改质过程的反应特性进行了研究,通过考察反应温度、压力、空速和氢油体积比对改质后的FCC汽油烃类组成的影响,分析了汽油中不同烃类的转化性能。结果表明,氢油比对产物组成影响不大,高温、低压、低空速有利于增加芳烃的选择性,低温、高压、高空速则有利于增加异构烷烃的选择性;临氢改质后,FCC汽油的烯烃含量明显降低,芳烃和异构烷烃含量增加,因而产品汽油的辛烷值基本保持不变;全馏分、轻馏分和重馏分FCC汽油临氢改质实验结果表明,烯烃含量较高的轻馏分具有更高的转化活性;在FCC汽油临氢改质过程中,同碳数的端烯烃反应活性高于内烯烃,直链烯烃的反应活性高于支链烯烃。  相似文献   

18.
The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction conditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production.  相似文献   

19.
Partial oxidation of methanol to formaldehyde by using a mixture of ferric and molybdenum oxides as the reaction catalyst at 280–330 °C has been studied in a continuous fluidized bed reactor. The reactor was a cylindrical tube of 20 mm in i.d. and 36 mm in o.d. placed vertically and connected to a truncated coneshaped cyclone separator. The catalyst was prepared by the precipitation method using aqueous solutions of ammonium heptamolybdate and ferric nitrate. The effect of certain parameters, such as temperature, superficial gas velocity and feed flow rates, on the extent of oxidation reaction has been investigated. The maximum size of the catalyst particles was 990 μm, therefore, neither external nor internal diffusion was expected to be effective in the process. The experimental data were correlated with three classes of hydrodynamic models presented for fluidized systems. The best correlation was obtained with compartment type models.  相似文献   

20.
文革 《化学工程师》2013,27(9):53-55
催化装置粗汽油回炼技术在有效降低催化稳定汽油烯烃含量的同时,对催化装置产品分布产生明显的影响,继而影响到装置的综合经济效益。本文对不同粗汽油回炼量条件下,催化装置稳定汽油性质和产品分布变化趋势进行分析,对经济效益进行对比,阐明应用粗汽油回炼降低汽油烯烃技术时,要选择合适的操作条件,以期得到较好的综合经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号