首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
航空发动机是飞行器的核心动力系统,工作环境恶劣,对其进行状态监测和寿命预测是保障飞行器安全可靠运行的重要技术手段。本文研究一种基于堆叠稀疏自编码神经网络的航空发动机剩余寿命预测方法,首先将多个自编码网络连接构成深度堆叠自编码网络,选取发动机的状态数据作为网络的训练输入,使网络逐层智能提取数据间的分布式规则,从而构建发动机退化的堆叠自编码学习模型。通过采用BP神经网络对发动机剩余寿命区间进行分类,作为发动机剩余寿命预测的结果。通过使用PHM2008挑战赛中发动机退化数据对本文研究方法进行了验证,结果验证了堆叠自编码网络深度学习方法对航空发动机剩余寿命预测的有效性。  相似文献   

2.
在航空发动机的各式故障中,由振动引发的故障占有很大的比重。航空发动机的振动信号中蕴藏了大量的状态及故障信息,因此有必要寻找一种有效的特征提取和故障诊断方法。基于ICA和DHMM的理论方法,形成了ICA-DHMM故障诊断方法。其中ICA用于源信号分离以及特征提取;DHMM作为模式识别工具。通过与ICA-SVM故障诊断方法和传统的DHMM故障诊断方法进行比较,表明本方法有更好的识别效果。  相似文献   

3.
目前锂离子电池已被广泛用作能量存储系统,在手机、电动汽车和飞机中均有广泛的应用。然而锂离子电池在使用过程中存在一定的危险性,若不能及时对电池健康状态评估(SOH)发现危险将会导致十分严重的后果。因此,研究一种基于卷积神经网络的锂离子电池健康状况评估方法,该方法通过使用卷积自编码神经网络对电池状态数据进行特征提取,有效提升了评估的准确率,并且神经网络能够在使用过程中不断进行学习,具有较高的灵活性,最后通过使用NASA公开的锂电池数据集测试,评估准确率达到93.6%,相比传统方法有较大提升。  相似文献   

4.
轴承是机械设备主要零部件之一,也是机械设备主要故障零部件之一。轴承故障问题为机械设备的重点,机械设备的使用受到故障轴承的直接影响。针对传统的卷积神经网络算法轴承故障诊断效率低下问题,本文提出了一种基于信号特征提取和卷积神经网络的优化方法。首先对原始数据信号进行时域和频域的信号特征提取,获得有效的故障特征值。之后,使用卷积神经网络对提取的特征值进行故障诊断,完成故障分类。本文使用美国凯斯西储大学的滚动轴承振动加速度信号作为数据集,对提出的方法进行验证,得到的故障诊断平均准确率为74.37%,准确率的方差为0.0001;传统的卷积神经网络算法故障诊断平均准确率为65.6%;准确率的方差为0.0019。实验结果表明,相比传统的卷积神经网络,提出的方法对轴承故障诊断的准确率有显著的提高,并且该方法的稳定性更佳,计算时间更少,综合性能更佳。  相似文献   

5.
卷积神经网络是图像识别领域研究的热点。本文改进现有卷积自编码器,提出卷积稀疏自编码神经网络(Convolutional Sparse Autoencoder Neural Network,CSAENN)。首先替换解码器的反卷积方式,在输入特征图周围补充零值将图扩大,简化了实现方式,降低了反卷积操作复杂度,同时不影响卷积自编码器对样本特征的提取与重构。其次迭代训练时,采用权值转置技术,实现一组权值可以同时提取样本特征与重构样本信息。最后在编码器中使用种群稀疏、存在稀疏以及高分散性稀疏化技术,有效地稀疏化网络权值和输出,提升网络性能。在公共数据集MNIST及CIFAR10上,多组对比实验结果验证了CSAENN有较好的性能。   相似文献   

6.
航空物探遥感数据的采集过程中受到电磁波辐射等外界因素的影响,导致航空物探遥感数据分类准确率较低,为此提出基于自编码神经网络的航空物探遥感数据分类方法;根据航空物探对象的基本特征,设置遥感数据的分类标准;通过辐射校正、几何纠正、噪声消除等步骤,完成航空物探遥感数据的预处理;构建自编码神经网络,利用自编码神经网络算法,从光谱、形状、纹理等方面提取遥感数据特征,通过特征匹配确定航空物探遥感数据的所属类型;通过分类性能测试实验得出结论:所提方法的全局遥感数据分类成功率和错误率的平均值分别为99.8%和0.6%,局部遥感数据分类的成功率和错误率的平均值分别为99.8%和0.3%,即所提方法在分类性能方面具有明显优势。  相似文献   

7.
轴承为风电机组的重要且故障频发部件,传统基于轴承振动数据的图像转换的卷积神经网络(CNN)的故障诊断技术存在一定局限性。提出了一种基于改进深度卷积神经网络(IDCNN)的直接时间序列特征提取方法,依据采样频率将原始振动数据划分为单个样本,构建诊断模型训练数据集。设计了一种新型的深度卷积神经网络(IDCNN),自动提取复杂样本数据的故障特征,提高DCNN的鲁棒性和泛化性,并将IDCNN提取的高维故障特征输入到分类器中,从而实现轴承故障的智能诊断。对比实验结果表明本方法有效提升了故障诊断精度。  相似文献   

8.
针对提高不同笔体下的手写识别准确率进行了研究,将深度卷积神经网络与自动编码器相结合,设计卷积自编码器网络层数,形成深度卷积自编码神经网络。首先采用双线性插值方法分别对MNIST数据集与一万幅自制中国大学生手写数字图片进行图像预处理,然后先使用单一MNIST数据集对深度卷积自编码神经网络进行训练与测试;最后使用MNIST与自制数据集中5 000幅混合,再次训练该网络,对另外5 000幅进行测试。实验数据表明,所提深度卷积自编码神经网络在MNIST测试集正确率达到99.37%,有效提高了准确率;且5 000幅自制数据集模型测试正确率达99.33%,表明该算法实用性较强,在不同笔体数字上得到了较高的识别准确率,模型准确有效。  相似文献   

9.
航空发动机轴承在高速、高温、高载荷等极端工况下易发生机械故障,为了提前预警,提出了一种基于自适应粒子群优化(Adaptive Particle Swarm Optimization, APSO)算法的最小二乘支持向量机(APSO Least Squares Support Vector Machine, APSO-LSSVM)对滑油系统中轴承磨屑进行在线监测的故障诊断及寿命预测。通过主成分分析法(Principal Components Analysis, PCA)对滑油磨屑信息进行降维处理,构建特征向量,并将特征向量输入APSO-LSSVM模型,对轴承故障状态进行分类并对轴承剩余寿命进行预测。结果表明:使用PCA可以保留数据样本99.9%的信息,同时还能极大地降低数据维度;与遗传算法(Genetic Algorithm, GA)、灰狼优化(Grey Wolf Optimization, GWO)算法、粒子群优化(Particle Swarm Optimization, PSO)算法的支持向量机相比,所提算法因采用了自适应调节粒子移动步幅,在进行轴承状态分类时准确率更高,分类正确率可达...  相似文献   

10.
近年来,卷积神经网络(CNN)等深度学习方法的发展为发动机故障诊断和预测带来了新的思路。CNN具有局部连接、权值共享、池化操作以及多层结构等特点,能够有效提取局部特征,降低网络的训练难度,使CNN具有很强的学习能力和特征表达能力。开展了深度卷积神经网络故障预测方法研究,实现了面向发动机气路故障预测算法架构。利用基于发动机试验仿真数据对该方法进行了验证,并与其他几种常见的基于数据驱动的预测方法进行了比较,验证结果表明本文提出的基于卷积神经网络的预测方法具有较好的可行性和效果,可作为开展发动机PHM技术研究的参考。  相似文献   

11.
为了简单、准确地进行轴承故障诊断,结合深度学习理论,对基于卷积神经网络的滚动轴承故障诊断方法进行了研究;首先,选用了结构相对简单的LeNet5卷积神经网络;然后,对轴承振动信号原始数据进行截取和归一化处理后直接生成生成二维矩阵作为神经网络输入;接着,优选卷积核大小、批大小、学习率及迭代次数等网络模型参数;最后,应用sigmoid函数进行多标签分类;实验结果表明,该方法能有效识别正常状态及不同损伤程度下的内圈、外圈、滚动体故障状态,识别准确率达到99.50%以上水平;基于卷积神经网络的滚动轴承故障诊断方法不仅在一定程度上可以简化故障诊断的过程,而且可以充分利用卷积神经网络模型的优势实现高效准确地故障诊断。  相似文献   

12.
张剑  程培源  邵思羽 《计算机应用》2022,42(8):2440-2449
针对旋转机械传感器信号样本有限影响深层网络模型训练学习的问题,提出一种结合改进残差卷积自编码网络与类自适应方法的故障诊断模型应对小样本数据。首先将少量已标记的源域数据和目标域数据创建为成对样本,并设计一种改进的一维残差卷积自编码网络对两种不同分布的原始振动信号进行特征提取;其次,利用最大均值差异(MMD)减小分布差异,并将两个域同一故障类别的数据空间映射到一个共同的特征空间,最终实现准确的故障诊断。实验结果表明,与微调、域自适应等方法相比,所提模型能够有效提高不同工况、微量已标记的目标域振动数据下的故障诊断准确率。  相似文献   

13.
基于深度卷积神经网络的图像检索算法研究   总被引:2,自引:0,他引:2  
为解决卷积神经网络在提取图像特征时所造成的特征信息损失,提高图像检索的准确率,提出了一种基于改进卷积神经网络LeNet-L的图像检索算法。首先,改进LeNet-5卷积神经网络结构,增加网络结构深度。然后,对深度卷积神经网络模型LeNet-L进行预训练,得到训练好的网络模型,进而提取出图像高层语义特征。最后,通过距离函数比较待检图像与图像库的相似度,得出相似图像。在Corel数据集上,与原模型以及传统的SVM主动学习图像检索方法相比,该图像检索方法有较高的准确性。经实验结果表明,改进后的卷积神经网络具有更好的检索效果。  相似文献   

14.
彭雪莹  江永全  杨燕 《计算机应用》2021,41(12):3626-3631
深度学习方法被广泛应用于轴承故障诊断,但在实际工程应用中,轴承服役期间的真实服役故障数据不易收集,缺乏数据标签,难以进行充分的训练。针对轴承服役故障诊断困难的问题,提出了一种基于图卷积网络(GCN)的迁移学习轴承服役故障诊断模型。该模型从数据充足的人工模拟损伤故障数据中学习故障知识,并迁移到真实的服役故障上,以提高服役故障的诊断准确率。具体来说,通过将人工模拟损伤故障数据和服役故障数据的原始振动信号由小波变换转换为同时具有时间和频率信息的时频图,并将得到的时频图输入到图卷积层中进行学习,从而有效地提取源域和目标域的故障特征表示;然后计算源域和目标域的数据分布之间的Wasserstein距离来度量两个数据分布之间的差异,通过最小化数据分布差异,构建了一个能诊断轴承服役故障的故障诊断模型。在不同的轴承故障数据集和不同工作条件下设计了多种不同的任务进行实验,实验结果表明,该模型具有诊断轴承服役故障的能力,同时也能从一个工作条件迁移到另一工作条件,在不同组件类型和不同工作条件之间进行故障诊断。  相似文献   

15.
深度卷积神经网络的汽车车型识别方法   总被引:1,自引:0,他引:1  
针对现有汽车车型识别方法计算量大、提取特征复杂等问题,提出一种基于深度卷积神经网络的汽车车型识别方法。该方法借助于深度学习,对经典的卷积神经网络做出改进并得到由多个卷积层和次抽样层构成的深度卷积神经网络。根据五种车型的分类结果,表明该方法在识别率方面较传统方法有明显的提高。实验还研究了网络层数、卷积核大小、特征维数对深度卷积神经网络的性能和识别率的影响。  相似文献   

16.
卷积神经网络在检测不同尺度的人脸时所需要的计算量很大,检测过程由多个分离的步骤组成,过于复杂。针对这两方面的不足,提出一种多尺度卷积神经网络模型。根据卷积神经网络各个层具有大小不同的感受野,从不同层提取多个尺度的特征向量分别进行人脸分类与回归,并将网络的全连接层改成卷积层,以适应不同大小的图片输入。该方法将人脸检测的多个步骤集成到一个卷积神经网络中,降低了模型复杂度。实验结果表明,相同测试条件下,所提方法相比其他人脸检测模型在准确率和检测速度上均有显著提升。  相似文献   

17.
针对目前大多数关系抽取中对于文本语料中较长的实体共现句,往往只能获取到局部的特征,并不能学习到长距离依赖信息的问题,提出了一种基于循环卷积神经网络与注意力机制的实体关系抽取模型。将擅长处理远距离依赖关系的循环神经网络GRU加入到卷积神经网络的向量表示阶段,通过双向GRU学习得到词语的上下文信息向量,在卷积神经网络的池化层采取分段最大池化方法,在获取实体对结构信息的同时,提取更细粒度的特征信息,同时在模型中加入基于句子级别的注意力机制。在NYT数据集的实验结果表明提出方法能有效提高实体关系抽取的准确率与召回率。  相似文献   

18.
基于多通道卷积神经网的实体关系抽取   总被引:1,自引:0,他引:1  
针对实体关系抽取任务中,传统基于统计学习的方法构建特征费时费力、现有深度学习方法依赖单一词向量的表征能力的问题,提出多通道卷积神经网模型。首先使用不同的词向量将输入语句进行映射,作为模型不同通道的输入;然后使用卷积神经网自动提取特征;最后通过softmax分类器输出关系类型,完成关系抽取任务。和其他模型相比,该模型可以获取输入语句更丰富的语义信息,自动学习出更具有区分度的特征。在SemEval-2010 Task 8 数据集上的实验结果表明提出的多通道卷积神经网模型较使用单一词向量的模型更适合处理关系抽取任务。  相似文献   

19.
基于深度卷积神经网络的行人检测   总被引:1,自引:0,他引:1  
行人检测一直是目标检测研究与应用中的热点。目前行人检测主要通过设计有效的特征提取方法建立对行人特征的描述,然后利用分类器实现二分类。卷积神经网络作为深度学习的重要组成,在图像、语音等领域得到了成功应用。针对人工设计的特征提取方法难以有效表达复杂环境下行人特征的问题,提出采用多层网络构建深度卷积神经网络实现对行人检测的方法。系统分析了卷积神经网络层数、卷积核大小、特征维数等对识别效果的影响,优化了网络参数。实验结果表明该方法对于行人检测具有很高的识别率,优于传统方法。  相似文献   

20.
随着深度学习技术的发展以及卷积神经网络在众多计算机视觉任务中的突出表现,基于卷积神经网络的深度显著性检测方法成为显著性检测领域的主流方法.但是,卷积神经网络受卷积核尺寸的限制,在网络底层只能在较小范围内提取特征,不能很好地检测区域内不显著但全局显著的对象;其次,卷积神经网络通过堆叠卷积层的方式可获得图像的全局信息,但在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号