首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
潘硕  王琴  詹达富  王冬梅 《硅酸盐通报》2019,38(8):2622-263
乳化沥青粉(Emulsified asphalt powder,EAP)是乳化沥青经喷雾干燥处理制得的一种粉体材料,具有易分散、稳定性好等优点,在水泥基材料韧性改性方面具有广阔的应用前景.研究了EAP对水泥砂浆抗压强度、弹性模量、抗折强度和轴心抗拉强度等力学性能的影响,并通过水化热、氮吸附和扫描电镜等微观测试手段研究了其对水泥浆体水化性能和微观结构的影响.结果表明,随EAP掺量提高,水泥砂浆的抗压强度和弹性模量呈下降趋势,但其折压比显著提高,增幅可达53.9%;抗拉强度呈先提高后降低的趋势,当掺量为4wt%时抗拉强度提高最多,高达44.4%,表明EAP的加入显著提高了水泥砂浆的韧性.同时,EAP降低了水泥浆体的水化放热速率,减少了C-S-H凝胶的生成量.当掺量为15wt%时,沥青膜与水化产物相互交织并在一定程度上包覆水化产物,从而对水泥砂浆抗压性能产生不利影响.  相似文献   

2.
结合石灰干化污泥在水泥窑协同处置的工艺优化研究,研究了不同石灰干化污泥掺量对水泥耐热性能的影响,并采用X射线衍射(XRD)和扫描电子显微镜(SEM)对部分水泥试块进行了微观表征。研究结果表明:常温下水泥抗压强度随石灰污泥掺量增多呈现先增后少的趋势;水化产物中的Ca(OH)_2在400℃以上的脱水分解是导致水泥高温抗压强度损失的主要原因;石灰干化污泥的掺入减少了水化产物中的Ca(OH)_2含量,从而提高了水泥熟料的耐热性能。  相似文献   

3.
低热硅酸盐水泥具有高温下强度稳定增长的特性,本文以硅酸盐水泥和低热硅酸盐水泥互为对比,研究了在水泥砂浆成型之后直接进行热养护(50~80℃)和标准养护1 d后再进行热养护两种情况下的强度发展和水泥浆体的物相组成、孔隙发展、微观形貌特征。结果表明:高温条件下水泥强度损伤行为源于水化后期的微结构劣化,但这一行为与水化初期受热密切相关,低热硅酸盐水泥在高温下较低的水化速率使其水化产物更均匀、密实,浆体的孔结构不随温度的升高以及受热方式的改变出现明显劣化,因此其强度在高温下仍能保持稳定增长;硅酸盐水泥后期由高温引发的钙矾石分解并没有直接导致强度倒缩,但水化初期过高的水化速率使水泥浆体出现更多的孔洞和缺陷,加速了后期由高温引起的单硫型水化硫铝酸钙(AFm)、Ca(OH)2析出与生长,且诱发浆体孔隙率增大。  相似文献   

4.
傅博  马梦凡  申旺  程臻赟  江尧 《硅酸盐通报》2020,39(8):2523-2527
气化渣是近年来兴起的煤化工工业产生的主要固体废弃物.研究了不同掺量的气化渣粉对普通硅酸盐水泥的凝结时间和抗压强度的影响规律,并采用XRD、FT-IR和SEM微观测试手段分析了气化渣在水泥浆体中的作用机理.结果 表明,未反应气化渣在水泥浆体中主要以团聚状态存在,低掺量气化渣(10%)在水泥浆体中能起到成核作用,有利于水泥发生水化反应,提高水泥浆体中水化产物数量,缩短凝结时间,提高水泥浆体抗压强度.气化渣掺量大于30%时,水泥浆体水化产物数量减少,水泥浆体结构松散,凝结时间随气化渣掺量增大显著延长,抗压强度明显降低.  相似文献   

5.
仲心卓  李路帆  姜义  林忠财 《硅酸盐通报》2021,40(11):3677-3684
为开发钢渣用于高温环境的潜力,最大限度地提高钢渣的综合利用率,通过强度试验、热重分析(TGA)、X射线衍射分析(XRD)、扫描电子显微镜分析(SEM)等测试手段探讨了钢渣加速碳化制品承受不同高温后的抗压强度、矿物相演变和微观结构。结果表明:钢渣加速碳化制品在200~600 ℃范围内的高温处理下,抗压强度得到提高,在400 ℃时达到最大值,为72.4 MPa,较初始强度提高20.5%,钢渣中硅酸钙在高温下进一步发生水化,其水化产物增强了基质连接。当温度达到800 ℃时,钢渣性能发生劣化,强度降低了90.7%,碳酸钙质量分数由24.1%降低至1.6%,而总质量损失可达19.67%,吸水率大幅度提高,且出现贯通试块的裂缝。钢渣加速碳化制品与普通水泥基材料相比,耐高温性能有所提升,但在800 ℃时并无明显优势。  相似文献   

6.
本文通过改进Hummers法制备氧化石墨烯(GO),利用傅里叶红外光谱(FTIR)表征GO,利用X-射线衍射(XRD)、水化热和SEM研究GO对粉煤灰水泥的水化和力学性能的影响.结果表明:GO的掺入提高了粉煤灰水泥砂浆的抗折和抗压强度,GO提高了粉煤灰水泥水化速率和能改善粉煤灰水泥浆体的微观结构.  相似文献   

7.
通过改变粉煤灰掺量,观察了焙烧水滑石增强的胶凝材料力学性能、水化及微观结构特性。抗压强度测试表明,焙烧水滑石能极大提高水泥-粉煤灰砂浆抗压强度。通过X射线衍射及综合热分析实验对硬化水泥浆体相组成进行了测试,结果显示焙烧水滑石能促进水泥-粉煤灰胶凝材料水化,进而提高了水化产物含量。通过扫描电子显微镜观察到,焙烧水滑石能促进粉煤灰溶解,且其成核作用有利于水化产物的生成。  相似文献   

8.
高温条件下G级油井水泥原浆及加砂水泥的水化和硬化   总被引:1,自引:1,他引:0  
利用X射线衍射仪和扫描电子显微镜研究了80~240℃温度范围内温度、硅砂对G级油井水泥水化硬化的影响,检测和分析了硬化体的水化产物、微观结构和强度,揭示了水化产物组成、微观结构及硬化体抗压强度的变化特点.结果表明:当养护温度超过110℃时,不添加硅砂的水泥原浆的主要水化产物由CSH(Ⅱ),C2SH2,C3S2H3转变为C2SH,硬化体微观结构由三维网络状结构转变为板快状或团块状结构,原浆水泥石抗压强度随温度升高而降低;在相对较高的温度条件下,添加硅砂的水泥主要水化产物则分别转变为C5S6H5,C6S6H(>150℃),C5S5A0.5H5.5,C3.2S2H0.8及其他类型的水化硅酸钙晶体,硬化体的微观结构相应地变为纤维网状、粗框架、短平行针状及团块状,在温度为100~150℃范围时,添加硅砂的水泥硬化体抗压强度随温度升高而增加,而在温度为150~240℃范围时.抗压强度随温度升高而降低.对于温度超过120℃的深井,合理的硅砂加量为30%~40%.  相似文献   

9.
研究多壁碳纳米管(MWCNTs)掺量(0wt%、0.05wt%、0.08wt%、0.10wt%、0.20wt%)对碳纳米管水泥基复合材料(CNT/CC)高温力学性能的影响.分别测试了常温时以及200℃、400℃、600℃和800℃高温后CNT/CC净浆试件的质量损失、抗折强度和抗压强度.结果表明:MWCNTs的加入能够降低水泥基体内部蒸汽压和温度梯度,有效地提高水泥基体抗高温爆裂能力.MWCNTs的掺入可在一定程度上降低水泥基材料的高温质量损失,但掺量过大时由于催化剂的热分解,质量损失会有所增加.热作用时,MWCNTs表面和端部易产生一些亲水基团和缺陷位,在一定程度上缓解了水泥基复合材料高温性能的劣化.800℃后,CNT/CC的相对残余抗折强度和相对残余抗压强度分别约为30% ~35%和45% ~50%.  相似文献   

10.
权娟娟  张凯峰  王可娜 《硅酸盐通报》2017,36(12):4033-4037
采用质量分数为5%~25%的改性磷石膏、15%的硅酸盐水泥熟料、60%~80%的矿渣混合磨细制成石膏矿渣水泥,研究了改性磷石膏掺量对石膏矿渣水泥浆体的抗压强度、水化热、孔溶液pH值及水化产物的影响情况.结果表明,掺入改性磷石膏使得石膏矿渣水泥的3 d、7 d抗压强度降低,其掺量为10%、15%时,水泥的28 d、90 d抗压强度超过普通硅酸盐水泥.在3 d至90 d龄期内,水泥孔溶液pH值随龄期增长而逐渐增大.在相同龄期时,随着改性磷石膏掺量的增大,水泥孔溶液pH值减小,水化放热峰出现时间延缓.微观分析表明,掺入改性磷石膏后,28 d龄期时的水泥水化产物主要为钙矾石和C-S-H凝胶,水化产物的生成量在改性磷石膏掺量为15%时最多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号