首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对人体医学图像组织结构复杂、模糊、噪声大的特点,提出一种新的多尺度结构元的自适应边缘检测算法,给出新算法中计算各结构元权值的方法,并将其与传统的算法进行比较。实验结果表明,新方法能克服传统边缘检测算法抗干扰能力小的缺点,较好地实现了噪声图像的弱边缘检测。具有检测灵活性强,获得边缘信息平滑、丰富的特点,而且,算法编程实现容易。  相似文献   

2.
基于形态学的遥感图像全方位边缘检测算法研究   总被引:11,自引:1,他引:11  
杨述斌  彭复员  张增常 《遥感信息》2003,(1):2-3,47,T001
遥感图像存在较多的噪声和畸变,直接用形态学梯度作边缘检测,存在结构元素单一、只对结构元素同方向的边缘敏感、去噪能力弱的缺陷。本文首先构造了全方位形态学结构元并进行边缘检测,然后再作边缘合成并得到最终图像边缘。实验表明,该方法可有效地滤除噪声并能保持图像边缘的细节。  相似文献   

3.
在形态学梯度边缘检测算子的基础上,针对图像中的几何特征和噪声提出了一种基于多结构元、多尺度的边缘检测方法,用不同取向的结构元素对图像进行多尺度检测,并综合各尺度下的边缘,得到了噪声存在下的理想边缘。实验表明,文中的方法边缘定位准确、轮廓清晰,保留了更多的图像细节,具有较强的抗噪能力。  相似文献   

4.
基于多结构元多尺度的形态学边缘检测   总被引:1,自引:0,他引:1  
在形态学梯度边缘检测算子的基础上,针对图像中的几何特征和噪声提出了一种基于多结构元、多尺度的边缘检测方法,用不同取向的结构元素对图像进行多尺度检测,并综合各尺度下的边缘.得到了噪声存在下的理想边缘.实验表明,文中的方法边缘定位准确、轮廓清晰,保留了更多的图像细节,具有较强的抗噪能力.  相似文献   

5.
基于形态学多结构元多尺度的自适应边缘检测   总被引:1,自引:0,他引:1  
数学形态学广泛应用于图像处理和模式识别领域;针对形态学单结构元在边缘检测中边缘信息丢失的问题,提出了用不同方向的结构元素对图像进行多尺度检测的自适应边缘检测方法;首先利用形态学高低帽运算对原始图像进行平滑处理,采用差分最大值确定结构元素的方向,利用形态学运算调整结构元素尺度,改进了数学形态学边缘检测算法;实验结果表明,与传统边缘检测算法相比,该算法在保持图像边缘清晰的同时.有很强的去除噪声能力.  相似文献   

6.
改进的HSI空间形态学有噪彩色图像边缘检测   总被引:1,自引:0,他引:1  
针对在RGB空间中很难有效区分颜色相似性问题,选择了更加符合颜色视觉特性的HSI颜色空间进行图像处理,提出了一种改进的形态学有噪彩色图像边缘检测方法,将开闭的迭代运算和双结构元多尺度运算应用到传统形态学梯度算子中,然后计算图像H、S、I三个分量的边缘信息,根据H、S、I所占比重对三分量进行加权融合得到彩色图像边缘.实验结果表明,该方法所检测的边缘符合人眼视觉特性,在抗噪声方面的效果比传统方法及其他多种方法更佳,能够更完整地保留原彩色图像的轮廓,计算量相对较小,有很好的实用性和通用性.  相似文献   

7.
多尺度形态学图像边缘检测方法   总被引:1,自引:2,他引:1  
在深入地探讨数学形态学在边缘检测领域中的应用的基础上,提出了一种形态边缘检测算子,并用该算子提取图像边缘。然后进行形态结构元素尺度调整,综合各尺度下的边缘特征,得到了噪声存在条件下较为理想的图像边缘,实验证明了该算法的可行性和有效性。  相似文献   

8.
在数学形态学基础上提出了一组新的形态学双梯度算子,把它们用于图像边缘检测,适当选取结构元素,得到了在有噪声,和没有噪声的条件下都较好的效果;并把结果与其他检测效果做了比较,实验验证了该组形态学双梯度算子的可行性和有效性。  相似文献   

9.
基于数学形态学的彩色噪声图像边缘检测算法*   总被引:1,自引:0,他引:1  
针对已有的数学形态学边缘检测算法对彩色噪声图像检测到的彩色边缘信息不够完整、清晰,提出了一种基于HSI色彩空间的多尺度多结构元的数学形态学边缘检测算法,采用以尺度和结构两个单位元素进行横向和纵向的拓展,以面的形式对彩色噪声图像进行全面的边缘检测。基于这种理念分别对H和S两个携带颜色信息的分量进行边缘检测,最后将两分量的边缘信息通过加权合成得到彩色图像的彩色边缘。实验证明,该算法的去噪效果明显,得到的彩色边缘轮廓清晰、细节丰富,对彩色边缘的提取具有可行性和有效性。  相似文献   

10.
本文提出了一种基于改进的形态学算子和多尺度多结构元素思想的边缘检测算法.改进的抗噪型形态学边缘检测算子增强了图像边缘检测时的抗噪能力,采用多尺度和多结构元素构建的边缘检测算法既具有较好的抗噪能力,同时可检测更多边缘方向.实验结果表明,该算法具有较好的抗噪能力,在检测出更多的边缘方向的同时可保留较多的边缘细节,具有较强的...  相似文献   

11.
改进的彩色图像边缘检测算法仿真研究   总被引:1,自引:0,他引:1  
研究彩色图像边缘检测准确性问题,因图像边缘保护能力较差,且图像在传输过程中特别容易受到噪声的干扰,造成了图像边缘模糊等问题缺陷.针对传统边缘检测算法存在的边缘分辨率较低的问题,提出了数学形态学彩色图像边缘检测改进算法.首先将采用数学形态四运算,膨胀、腐蚀、开、闭等变换以及组合,并根据不同的结构元素的尺度大小和结构元类型,给出了一种改进型形态学抗噪型边缘检测算子,有效地检测出完整的图像边缘信息,并保持图像边缘的平滑性.仿真实验结果证明,改进的算法能有效提取准确的边缘信息,且又具有很强的抗噪性,为图像边缘检测提供了参考.  相似文献   

12.
基于形态学方法的胃癌病理细胞图像的边缘检测   总被引:5,自引:0,他引:5       下载免费PDF全文
为了进一步用流域分割和图像信息融合的方法对于细胞形态的分析与识别打下基础,提出了利用形态学原理进行胃癌病理细胞图像灰度化边缘检测,并获得了实验性结果。通过与传统边缘检测方法进行结果对比,证明了形态学方法在医学病理细胞图像边缘检测研究的优势,同时结合图像纹理特点,对影响图像边缘检测的各种结构元素和灰度阈值进行了讨论。  相似文献   

13.
针对红外图像边缘模糊和非均匀性噪声强的特点,提出了一种阈值分割与形态学相结合来提取红外图像特征的方法,对红外图像进行边缘提取。仿真实验结果表明:该方法能够清晰、有效的提取红外图像的边缘,改善图像质量,是一种有效的边缘检测方法,具有较好的实用性。  相似文献   

14.
苏波 《微计算机信息》2007,23(21):309-310
针对常规线性边缘检测器处理遥感图象时细节丢失严重的缺点,介绍了数学形态学基本理论,讨论了数学形态学在边缘检测中的应用.形态学的灰度梯度运算是在经典形态变换基础上提出的一类非线性算子.对于结构元素的选取作了一定的说明.另外,还与传统线性算子的处理结果进行了比较.通过计算机对遥感图像的模拟实验表明:基于形态灰度梯度运算的遥感图像边缘检测方法,不但几何意义明确,易于构造,而且性能也优于传统检测算子,证实了该方法的可行性.  相似文献   

15.
提出了一种基于形态学的OCT图像的边缘检测方法,即对原始图像预处理,增加图像的对比度和边缘特性,使用形态学腐蚀和膨胀两个基本算子进行,选取了合适的结构元素,最后采用canny算法提取边缘。实验结果表明,经过改进的数学形态学方法处理的图像边缘特性的提取效果显著增强,且效率高、处理速度快。与经典的边缘检测算子和传统形态学边缘检测算法相比,该算法优势更加明显,边缘提取质量显著提高,且速度有显著提升。  相似文献   

16.
提出了一种边缘检测的有效算法。该算法在数学形态学的基础上,针对图像中噪声和边缘形态的不同建立了多结构元素,利用灰度形态变换原理进行边缘提取。实验表明,与经典的边缘检测算子相比,该算法具有很好的边缘提取能力,但其抗噪能力较差。为此,探讨性地提出了基于小波变换和数学形态学相结合的边缘提取方法。  相似文献   

17.
宋昱  孙文赟 《计算机科学》2021,48(6):138-144
现有的边缘检测方法在含噪图像中的检测性能不佳.针对含噪图像的边缘检测问题,提出了利用引导核改进基于非线性结构张量的含噪图像边缘检测方法.首先,计算含噪图像的张量积.然后,根据图像梯度对张量积进行扩散,图像梯度依赖张量积本身.扩散方程中的扩散矩阵包含张量积,该张量积是通过各向异性的引导核进行空间自适应平均,而不是通过各向...  相似文献   

18.
自适应的形态学边缘检测算法   总被引:1,自引:1,他引:1       下载免费PDF全文
薛丽霞  李涛  王佐成 《计算机工程》2010,36(23):214-216
针对传统的基于形态学边缘检测算法抗噪能力较差以及易丢失边缘细节的问题,提出一种自适应的抗噪型边缘检测算法。该算法采用多尺度的结构元素进行滤波,根据边缘方向自动选择相应方向的结构元素进行边缘检测以得到更多的边缘细节。实验结果表明,该算法不仅抗噪能力较强,检测到的边缘细节较多,而且还能提高边缘检测效率,是一种有效的边缘检测算法。  相似文献   

19.
基于多尺度数学形态学的边缘检测   总被引:17,自引:0,他引:17  
提出了一种基于多尺度数学形态学的图像边缘检测方法,利用数学形态学在描述灰度图像方面的优势,分析了在不同尺度下边缘提取的特点,采用非极大值运算方法提取边缘点,并与其他形态学边缘检测法进行了比较,给出了在含噪条件下边缘提取的实验结果。  相似文献   

20.
基于软化形态学的边缘检测   总被引:15,自引:0,他引:15       下载免费PDF全文
在介绍适用于二值图象的软化形态学的定义及特性的基础上,将软化形态学概念加以推广,使之适用于灰度图象,并提出了一种基软化形态学的边缘检测方法-SMD,还把此方法与其他的基于匀边形态学方法进行了比较,实验结果表明该方法具有很强的抑制噪声能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号