首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 403 毫秒
1.
鉴于传统的基因选择方法会选出大量冗余基因从而导致较低的样本预测准确率,提出一种基于聚类和微粒群优化的基因选择算法。首先采用聚类算法将基因分成固定数目的簇;然后,采用极限学习机作为分类器进行簇中的特征基因分类性能评价,得到一个备选基因库;最后,采用基于微粒群优化和极限学习机的缠绕法从备选基因库中选择具有最大分类率、最小数目的基因子集。所选出的基因具有良好的分类性能。在两个公开的微阵列数据集上的实验结果表明,相对于一些经典的方法,新方法能够以较少的基因获得更高的分类性能。  相似文献   

2.
为了得到低冗余度高识别率的基因子集,提出了一种耦合基因灵敏度信息的微粒群优化基因选择方法.首先,通过单隐层神经网络从微阵列数据中提取各个基因的基因—类别灵敏度值;其次,在基因聚类基础上,利用基因灵敏度信息滤除低灵敏度的基因;最后,将基因灵敏度信息编码进二进制微粒群优化算法作进一步基因选择.在两个公开的微阵列数据集上的实验结果表明,对比其他方法,由于充分考虑各个基因灵敏度信息,因此能够选出较少基因但分类性能更高的基因子集.  相似文献   

3.
特征选择是模式分类中重要的数据处理方法.文中提出一种基于知识引导微粒群优化的特征选择方法.该方法采用特征被选择的概率对微粒进行编码,将包含离散变量的特征选择问题转化为一类连续变量优化问题.依据微粒适应值的大小及微粒分量被选择的频率,确定特征所属的类型及其被更新的概率,以加快微粒群收敛的速度.将所提方法应用于10个典型测试数据集及肝炎病临床诊断数据集,实验结果表明,该方法在减少特征个数的前提下,能够提高分类的精度.  相似文献   

4.
关健  韩飞  杨普秀 《计算机工程》2013,(11):187-190,196
为了以较少冗余的特征基因得到较高的分类准确率,提出一种基因选择算法。通过分析基因对不同类别间的判别熵信息,剔除大量的冗余基因,以形成一个初选基因库。在初选基因库中,运用粒子群优化算法结合基因组,对不同类别问的判别熵信息和样本分类准确率进行最优基因子集选择。在2组基因微阵列数据上的实验结果表明,该算法不仅能够获取较少冗余的可解释基因子集,而且对最终选择出的特征基因也能获得较高的样本识别率。  相似文献   

5.
在分析了现有的基于密度的聚类算法的基础上,结合微粒群算法,提出了一种基于密度的微粒群混合聚类算法。相对于DENCLUE聚类算法,该算法能够对使用的资源进行有效的控制,有利于实现对数据库数据的增量处理。实验证明了算法的有效性。  相似文献   

6.
K-均值算法是广泛使用的聚类算法,但该算法的聚类数目难以确定,且聚类结果对初始聚类中心比较敏感.本文提出一种基于微粒群优化聚类数目的K-均值算法,该算法采用聚类中心的坐标和通配符表示微粒位置,通过定义微粒更新公式中新的加减运算符,动态调整聚类中心的数目及坐标,此外,以改进的聚类有效性指标Davies-Bouldin准则作为适应度函数.5个人工和真实数据集的聚类结果验证了所提算法的优越性.  相似文献   

7.
提出了一种过滤微粒群优化算法并应用于虚拟企业的伙伴选择问题.该算法以优良适应值微粒取代部分不良适应值微粒,使算法具有过滤能力,加快了搜索速度,并保证收敛于全局最优解.仿真实验及与基本PSO算法的对比分析表明了FPSO算法的有效性.  相似文献   

8.
孔莉芳  张虹 《控制与决策》2012,27(7):967-974
针对大量无关或冗余的特征通常会降低模式分类中分类器性能的问题,提出一种基于异步并行微粒群优化的特征子集选择方法(AP-PSO).该方法采用二进制微粒群优化搜索特征子集,利用异步并行方式提高算法的运算效率;为有效协调种群的全局探索和局部开发能力,充分利用混沌运动的遍历性和随机性,提出一种一致混沌变异算子.与已知4种特征子集选择方法进行比较,所得结果验证了该算法的有效性.  相似文献   

9.
微粒群优化算法   总被引:39,自引:1,他引:39  
介绍了微粒群优化(PSO)算法的原理、算法流程、算法参数及其对算法性能的影响.讨论了各种改进的PSO算法.分析了多相微粒群优化算法(MPPSO)的原理、算法方程、算法参数及其对算法性能的影响.最后归纳了PSO算法的应用概况,并就PSO算法进一步的研究工作进行了探讨和展望.  相似文献   

10.
针对基本微粒群优化算法(PSO)存在陷入局部最优的问题,提出一种基于排列的改进微粒群算法(RPSO).该算法对每次迭代过程中的个体历史最优解按照适应值的优劣顺序排列,然后选择若干个较优的个体历史最优解作为候选解,再以概率方式在候选解中确定群体历史最优解的位置.RPSO算法使基本PSO算法易于陷入局部最优的问题,得到有效的缓解.为了分析算法的性能,对几种典型的非线性函数进行了测试.实验结果表明,RPSO算法比基本PSO算法具有更好的寻优能力.  相似文献   

11.
基于粒子群优化算法的数据流聚类算法   总被引:1,自引:0,他引:1  
肖裕权  周肆清 《微机发展》2011,(10):43-46,50
针对当前基于滑动窗口的聚类算法中对原始数据信息的损失问题和提高聚类质量和准确性,在现有基于滑动窗口模型数据流聚类算法的基础上,提出了一种基于群体协作的粒子群优化算法(PSO)的新数据流聚类算法。这种优化的新数据流聚类算法利用改进的时间聚类特征指数直方图作为数据流的概要结构以及应用PSO在聚类过程中对聚类质量的局部迭代优化。实验结果表明,此方法有效减少了内存的开销,解决了对原始数据信息损失的问题。与传统的数据流聚类算法相比,基于粒子群优化算法的数据流聚类算法在聚类质量和准确性上明显优于传统的数据流聚类算法。  相似文献   

12.
基于离散微粒群算法的动态Web服务选择   总被引:3,自引:0,他引:3  
Web服务作为一种新型的Web应用模式近年来得到了迅速的发展.如何高效动态地把现存的各种Web服务整合起来以形成新的满足不同用户需求的增值的复杂服务,已成为新的应用需求和研究热点.针对服务选择问题,设计了一种面向动态Web服务选择的离散微粒群算法,并结合服务选择研究背景,提出了3种速度计算算子和一种位置进化方程.针对进化算法容易陷入局部极值这一共同缺陷,定义了微粒无希望/重希望准则,以保证微粒群的多样性,增强全局搜索能力.理论分析和实验结果表明,该算法不仅具有较快的收敛速度,而且具有较好的全局收敛性能;同时说明Max运算在服务选择中具有较好的综合性能.  相似文献   

13.
提出一种基于鱼群优化算法和Cholesky分解的改进的正则极限学习机算法(FSC-RELM)来对基因表达数据进行分类。FSC-RELM算法中,首先用鱼群优化算法对RELM输入层权值进行优化,其中目标函数定义为误差函数的倒数;再对RELM输出层权值矩阵进行分解,采用Cholesky分解法进行优化,以提高算法速度,减少训练时间。为了评价算法性能,对若干标准基因数据集进行了实验,结果表明,FSC-RELM算法在较短的时间内可以获得较高的分类精度,性能优异。  相似文献   

14.
基于粒子群优化算法的测试选择优化方法研究   总被引:1,自引:3,他引:1  
测试选择优化问题作为复杂电子装备的诊断设计优化过程中的一个关键问题,是一个典型的集合覆盖问题,属于经典的N—P难题;针对现有优化方法存在的不足,通过对测试选择问题的分析,提出一种基于二进制粒子群优化算法的测试选择优化方法,将备选测试集合采用二进制粒子编码,构造粒子适应度函数,通过粒子群搜索实现了快速求解;与传统方法相比较,该方法搜索速度快,优化效果明显,该方法已在工程实践中得到应用。  相似文献   

15.
以保证全局收敛的随机微粒群算法为基础,文章提出了一种双群体随机微粒群算法——DB-SPSO。该方法采用两个群体同时进化,一个群体在进化过程中所出现的停止微粒由另一群体的微粒来代替,并和此群体中其余的微粒一起继续进化。通过对此算法的参数适用范围及收敛率进行讨论,给出了此算法的适用范围。其仿真结果表明:对于单峰函数和多峰函数,此算法都能够取得较好的优化效果。  相似文献   

16.
针对入侵检测系统特征报警聚类质量低、冗余告警的不足,提出基于改进混沌自适应粒子群优化的IDS 特征 报警聚类方法。该方法结合混沌算法特性和改进粒子群算法自适应惯性权重系数以及对非线性动态学习因子进行改善,引导 粒子群在混沌与稳定之间交替波动,保证粒子运动惯性,更利于趋近最优。本方法能够克服PSO算法的过早收敛、“惰性”反 应等缺点,利于聚类中心更能趋向全局最优。实验结果表明,本文粒子群参数改进算法提高了特征报警聚类质量,具有较高的 检测率和较低的误报率。  相似文献   

17.
波段选择是降低高光谱数据量,克服地物分类中Hughes现象的有效手段。子集生成方式和评价准则是选择算法的两要素。提出一种混合随机搜索与启发式搜索的子集生成方法。该方法在随机搜索中嵌入启发式搜索,对由离散粒子群优化算法每次迭代更新的种群利用序贯搜索进行局部微调,提高了随机搜索的精度。这种嵌入微调也保证了优化算法解的有效性。高光谱波段选择与分类实验比较了该方法与混合遗传算法、标准遗传算法和顺序前向浮动选择算法的性能,表明算法能选择出评价准则意义下更好的子集。  相似文献   

18.
由于支持向量机的主要参数的选择能够在很大程度上影响分类性能和效果,并且目前参数优化缺乏理论指导,提出一种粒子群优化算法以优化支持向量机参数的方法.该方法通过引入非线性递减惯性权值和异步线性变化的学习因子策略来改善标准粒子群算法的后期收敛速度慢、易陷入局部最优的缺陷.实验结果表明,相对于标准粒子群算法,本方法在参数优化方面具有良好的鲁棒性、快速收敛和全局搜索能力,具有更高的分类精确度和效率.  相似文献   

19.
基于小生境微粒群算法的山峰聚类   总被引:2,自引:0,他引:2  
将山峰聚类法和小生境微粒群算法结合,构建一种基于小生境微粒群算法的山峰聚类法:首先在数据空间上构造网格,进而构造出表示数据密度指标的山峰函数,然后将山峰聚类方法中通过顺序地削去山峰函数来选择聚类中心这一步用小生境微粒群算法代替,通过执行小生境微粒群算法对山峰函数进行多峰函数寻优,找到山峰函数的每一个峰,即可确定聚类中心的个数和每一个聚类中心位置。仿真实验表明,构建的新算法能够弥补传统聚类算法的一些缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号