共查询到19条相似文献,搜索用时 78 毫秒
1.
本文研究了在直接序列扩频通信接收信号中有窄带干扰情况下,对于干扰抑制来说。小波包变换是一种较为合适的算法。 相似文献
2.
本文研究了在直接序列扩频通信接收信号中有窄带干扰情况下,对于干扰抑制来说,小波包变换是一种较为合适的算法。 相似文献
3.
提出了一种基于图像小波包变换及与分解层次相关的自适应阈值的去噪方法。利用小波包对图像进行分解,可以同时对图像的低频和高频部分进行分解,可以更好地保留图像信息,减少噪声对图像的影响。同时对小波包树系数用自适应阈值进行软阈值处理,可以很好地保留边缘等图像信息,这一方法比采用常用的阈值明显提高了去噪图像的信噪比。通过对加噪图像的实验可以看出,本文方法不仅可以有效地去除加性高斯白噪声,而且很好地保留原图信息,对进一步图像处理有所帮助。 相似文献
4.
5.
为了进一步提高直接序列/跳频(DS/FH)扩频系统的抗干扰能力,基于小波包变换结合递归最小二乘算法设计了一种变换域自适应干扰抑制算法,该算法采用小波包分解定位窄带干扰,递归最小二乘算法抑制窄带干扰.通过蒙特卡罗仿真分析在增加抗干扰模块后,DS/FH系统工作在准静态时,在不同信噪比条件下抗窄带干扰性能.仿真结果表明:该算法具有较强的自适应性以及抗窄带干扰能力,其性能优于传统的直接置零法,适用于多音干扰下的恶劣通信环境. 相似文献
6.
基于小波包变换的动态阈值去噪方法 总被引:1,自引:0,他引:1
由于语音信号的非平稳性,传统的小波阈值去噪算法虽然能够衰减一部分语音信号中的噪声,但这些算法会不可避免地造成有用语音信号的损失,以至于去噪后的语音听觉质量下降,达不到很高的信噪比.一种基于小波包变换和动态信噪比估计的阈值方法可以更好地解决这一问题,这种方法可以有效保护有用信号不被去除.实验结果也证明这种方法可以达到更高的信噪比. 相似文献
7.
采用变换域自适应技术抑制DS扩频通信中的窄带干扰 总被引:1,自引:2,他引:1
为了去除DS扩频系统的窄带干扰,本文提出利用调制重叠变换(MLT)把接收信号映射到变换域,然后应用变换域自适应滤波技术进行抗干扰处理,计算机仿真结果表明该算法可取得对抗干扰很大的阻带衰减,并且系统性能不随干扰频率和干扰带宽的变化而变化,而且能实时实现,本中讨论了实现时应注意的问题,可以预见MLT很有希望取代传统的块变换。 相似文献
8.
主要对基于小波包变换的谐波检测方法进行了探讨,通过MATLAB进行了编程仿真,从而确定这种检测方法的可行性和优越性。 相似文献
9.
10.
提出了在WPT域上基于块模糊分类的新的自适应水印算法。首先用m-序列来控制对原始图像进行小波包变换的分解结构,将适当的小波系数组成小波子块。然后根据人类视觉系统(HVS)模型和能量模型,对小波子块进行模糊分类。最后,根据分类结果,将不同强度的二值水印嵌入到不同的小波子块中。实验结果表明,提出的算法能抵抗各种图像处理的攻击,具有较好的鲁棒性。 相似文献
11.
提出了一个基于快速傅里叶变换(FFT)和分数阶傅里叶变换(FRFT)的线性频率调制(LFM)干扰参数的估计和抑制方法.通过FFT粗略估计和FRFT精确估计,确定LFM干扰在分数阶傅里叶域所处的旋转角度,估计出LFM的相关参数,利用最小二乘法综合出LFM干扰信号;然后从接收的信号中减去,有效地抑制LFM干扰.性能仿真分析表明,该方法较好地改善了误码率性能,降低了计算的复杂度,提高了系统处理的实时性. 相似文献
12.
13.
针对小波变换的不足,根据原始图像各子块对水印信息的适应程度不同,提出一种基于Arnold置乱和小波包分解的自适应水印算法。首先,该算法采用Arnold变换对水印图像进行预处理,然后对原始图像进行小波包分解,小波包分解能够提供一种更为精细的分解方法,将频带进行了多层次的划分,最后将水印图像嵌入到小波包分解后的子带中,水印的嵌入强度和嵌入位置均根据原始图像的内容自适应地决定,这样很好地解决了水印鲁棒性和不可见性之间的矛盾。仿真实验结果表明,算法对常见的图像攻击具有较强的鲁棒性和稳健性。 相似文献
14.
Heart rate variability (HRV) is a very significant noninvasive tool for assessment of sympathovagal balance (SB) that reflects variation of parasympathetic and sympathetic activities in autonomic nervous system (ANS). Low frequency/high frequency (LF/HF) power ratio provides information about these activities. Because of nonstationary characteristic of HRV, analyses based on wavelet transform were typically preferred in previous studies. There is an important problem that required frequency ranges for LF and HF cannot be obtained using discrete wavelet transform (DWT). Different sampling frequencies do not remove this problem. In this study, a solution based on wavelet packet (WP) is presented for removing this problem. In addition, effect of WP on SB values is investigated. Method was applied to spontaneous ventricular tachyarrhythmia database and variation of energy values and LF/HF energy ratios were compared for DWT and WP. WP provides absolutely excellent approximation to required frequency bands and exposes different and impressive SB results. 相似文献
15.
本文基于小波包变换研究了不同物种血红蛋白α链和β链的能量分布情况,结果表明小波包能量作为同源蛋白质的特征向量,不仅能够体现出蛋白质的同源性,而且也能反映出蛋白质在进化过程中的遗传变异情况,并从分子水平揭示了医学上用猪血代替人血解决血液短缺问题的缘由,为蛋白质功能的研究提出了一种新的研究思路。 相似文献
16.
17.
指出了单一阈值选取规则小波包降噪方法的局限性,提出了一种改进的小波包能量分段阈值降噪方法,并与其他小波包降噪方法进行对比分析。仿真结果表明,较其他小波降噪方法,改进的小波包能量分段阈值降噪方法去噪效果更佳。 相似文献
18.
Dat Tien Nguyen Young Ho Park Kwang Yong Shin Seung Yong Kwon Hyeon Chang Lee Kang Ryoung Park 《Digital Signal Processing》2013,23(5):1401-1413
Recently, finger-vein recognition has received considerable attention. It is widely used in many applications because of its numerous advantages, such as the small capture device, high accuracy, and user convenience. Nevertheless, finger-vein recognition faces a number of challenges. One critical issue is the use of fake finger-vein images to carry out system attacks. To overcome this problem, we propose a new fake finger-vein image-detection method based on the analysis of finger-vein images in both the frequency and spatial domains.This research is novel in five key ways. First, very little research has been conducted to date on fake finger-vein image detection. We construct a variety of fake finger-vein images, printed on A4 paper, matte paper, and overhead projector film, with which we evaluate the performance of our system. Second, because our proposed method is based on a single captured image, rather than a series of successive images, the processing time is short, no additional image alignment is required, and it is very convenient for users. Third, our proposed method is software-based, and can thus be easily implemented in various finger-vein recognition systems without special hardware. Fourth, Fourier transform features in the frequency domain are used for the detection of fake finger-vein images; further, both spatial and frequency characteristics from Haar and Daubechies wavelet transforms are used for fake finger-vein image detection. Fifth, the detection accuracy of fake finger-vein images is enhanced by combining the features of the Fourier transform and Haar and Daubechies wavelet transforms based on support vector machines.Experimental results indicate that the equal error rate of fake finger-vein image detection with our proposed method is lower than that with a Fourier transform, wavelet transform, or other fusion methods. 相似文献
19.