首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用铝热还原—真空电磁悬浮熔炼法,对废弃的选择性催化还原(SCR)钛基脱硝催化剂制备Ti-Al基金属间化合物进行了试验研究。通过SEM和XRD分析,发现合金中所观察到的相主要由TiAl_2,Ti_5Si_3和TiAl相组成,而杂质相主要以氧化物和碳化物的形式存在。随着合金的精炼,钛铝化合物的组成由富钛钛铝化合物相转变为富铝钛铝化合物相,杂质含量逐渐减少,三次精炼后的总杂质去除率可达85%以上。硬度测试表明,随着精炼次数增加,硬度呈上升趋势。这是由于高硬度的TiAl_2相增加和低硬度的TiAl相减少所导致的。  相似文献   

2.
利用攀枝花产的电炉钛渣铝热还原一步合成Ti-Al-xFe-ySi多元合金,探索CaO对渣金分离、合金收率及钛收率的影响。当CaO/Al=1.1时,制备的熔渣主要生成了低熔点Al_2O_3·CaO和7Al_2O_3·12CaO相,渣金分离效果最好。合金收率达到62%,Ti收率达到92%,合金中氧含量仅为1.32%。制备的合金主要物相为TiAl_3、TiAl相,而渣中还原出来的Fe替代了TiAl3中的部分Ti形成了Al_3Ti_(0.75)Fe_(0.25)物相,而Si主要与合金中的Ti结合生成了Ti5Si3相,合金中还含有少量的碳与TiAl和TiSi相形成了Ti_3SiC_2和Ti_2AlC新相。  相似文献   

3.
利用真空电磁悬浮熔炼炉对铝热法还原攀枝花酸溶性钛渣所得的粗TiAl基合金进行精炼,研究了精炼前后合金物相组成、合金元素在微区中的分布、组织结构和杂质含量的变化。发现在精炼参数为熔炼电流60A,保温时间5min,冷却速率4A/min时,精炼后的合金层片状组织和裂纹减少,晶粒尺寸减小。Si、Fe元素置换Al元素形成置换固溶相,存在于TiAl、TiAl_2等相中,形成了Fe_2AlTi、Si_2Ti、Al_2FeSi、AlFe、FeTiSi等物相,接近于Ti-Al二元合金的双相组织。合金中夹杂物的含量减少了45%,去除了合金中的粒径5μm的大颗粒夹杂物。  相似文献   

4.
真空磁悬浮精炼TiAl合金理论及试验研究表明:提高真空度和增大加热电流有利于降低合金中氧含量,但是Al元素挥发严重,精炼过程剧烈,不利于合金成分控制和渣夹杂物去除。加热电流60 A,真空度400 Pa(通入氩气),精炼时间30 min条件下,合金中大颗粒的渣夹杂物得到有效去除,相同工艺条件下,精炼两次后,合金中O含量降低到0.50%,N含量降低到0.55%。精炼两次后得到的TiAl合金的组织为近层片组织,由γ和α_2组织构成,主要物相由TiAl、Ti_2AlN和Ti_2Al相组成,得到了目标TiAl合金的微观组织和相组成。该工艺制备的TiAl合金为室温脆性断裂,弯曲强度为258 MPa,维氏硬度(HV)为486。  相似文献   

5.
从理论上分析了钛渣铝热还原制备Ti-Al-xFe-ySi多元合金的可行性,计算并分析了钛渣中金属氧化物与铝还原过程中可能的化学反应,讨论了钛渣中氧化物还原反应顺序的优先程度。结果表明,钛渣铝热还原制备钛铝基多元合金是可行的。从热力学分析了制备的合金中可能出现的二元合金相,主要为Ti5Si3、TiAl3和TiFe,其中Ti5Si3最易生成,研究结果较好地满足了热力学分析结果,制备的合金主要物相为Al2.68Mn0.32Ti和Al3Ti0.75Fe0.25,还有少量的TiFe和Ti3SiC2相。  相似文献   

6.
采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等现代检测分析方法,研究了由TiH_2-石油焦-铝铈合金与铝液制备的不同Ce含量的Al-Ti-C-Ce母合金的显微组织,结果表明:Al-Ti-C-Ce母合金由α(Al),(TiC),(TiAl_3),(Ti_2Al_(20)Ce)相组成; Al-Ti-C-Ce母合金铸样晶界为连续的共晶组织,晶内分布着大量的粗大第二相组织,晶界共晶和晶内第二相中均含有Ti_2Al_(20)Ce相。部分大颗粒第二相组织为复合结构,复合晶粒内部存在颜色较深的α(Al)+Ti_2Al_(20)Ce+(TiC)的包晶组织。线分析结果表明:第二相粒子中,元素C的分布相对均匀,粒子内部C, Al含量相对较低, Ti, Ce含量相对较高, Ce的分布显著高于粒子外部区域;具有复合结构的第二相中所包含的粒子区域, Ti, C含量极高,而Al, Ce含量较低。合金在凝固过程中, TiC粒子作为晶核优先析出, TiAl_3相通过TiC粒子形核,并与游离的Ti, Ce发生包晶反应生成Ti_2Al_(20)Ce相,多余Ce原子会与晶界处的TiC, TiAl_3的复合粒子反应生成TiC, Ti_2Al_(20)Ce复合粒子。含Ti, C, Ce的复合粒子作为领先相优先析出,细化Al-Ti-C-Ce母合金晶粒。  相似文献   

7.
作为一些航空与航天用镍基超合金的替代材料,人们已经广泛地研究了各种金属间化合物,其中包括两相钛铝化合物.铝含量为45%~48%的这类钛铝化合物合金处在α2(Ti_3Al)十γ(TiAl)相区内.它们具有良好的高温强度,而密度却只有传统的镍基合金密度的50%左右,重量轻是未来航空与航天用途的至关重要的优点.钛铝化合物的缺点是室温断裂韧性和塑性都很低,并且难以进行传统的热形变加工(包括轧制、锻造和挤压等)和切削加工.最终形状零件的熔模铸造克服了一些困难,其成本效益也是令人满意的.与熔棋铸造零件相伴而来的问题包括能否使横断面上的显微组织均匀和在缺少加工组织的情况下保持优异的机械性能.  相似文献   

8.
以Ti,Al和TiN粉体为原料,采用自蔓延高温合成技术制备Ti_2AlN材料,研究原料配比对反应合成Ti_2AlN的影响,并分析Ti_2AlN的形成机制。结果表明:Ti/Al/TiN体系自蔓延高温合成产物主要由TiN,Al_3Ti和Ti_2AlN组成。原料中适当添加过量的Al或Ti,均可显著促进Ti_2AlN的合成,其中添加过量Ti对促进Ti_2AlN合成的作用更明显。而降低TiN的用量对促进Ti_2Al N合成的作用最明显,可获得高Ti_2AlN含量的钛铝氮材料。自蔓延高温合成Ti_2AlN的反应机制为Ti和Al反应合成Ti-Al化合物,同时形成Ti-Al液相;然后Ti-Al液相包裹住TiN晶粒;最后以TiN晶粒为核心,TiN晶粒逐渐与周围的Ti-Al液相反应合成板条状Ti_2AlN。  相似文献   

9.
Ye  GZ 阎惠君 《铁合金》1992,(4):44-50
研究了1300—1600℃温度间 Ti-Si-Ca-O 系的相关系。1300℃时 Ti-Si-O 亚系中 Ti_2O_3与 Ti_5Si_3和 SiO_2共存。硅化物Ti_5Si_4、TiSi、TiSi_2除了与金属硅之外,也和 SiO_2共存。1600℃时 Ti_5Si_3与 TiO+Ti_2O_3,Ti_2O_3+SiO_2,以及 SiO_2+Ti_5Si_4共存。具有40%(原子)Ti 的液态 Si-Ti 合金与 SiO_2共存。在 CaO-Ti_2O_3-SiO_2 亚系中有一种石榴石结构a=12.165±0.001的三元相 Ca_3Ti_2Si_3O_(12),还有二元化合物 Ca_2Ti_2O_5与 Ca_8Ti_6O_(17),发现后面这两种化合物是CaTiO_(1+x)和 Ca_4Ti_3O_(4+3x)固溶系组成部分,其中前者具有钙钛矿结构。发现在 CaO-Ti_2O_3—SiO_2系中能与所有三相组合物平衡的金属相是 Si 含量仅小量变化的化合物 Ti_5Si_3(熔点=2125℃).为了在1600℃时由硅热还原钛的氧化物得到液态金属和渣,必须用过量的 Si 来获得40%原子(52重量%)Ti(或低于此)的硅钛合金。  相似文献   

10.
以钛白粉为原料,采用电铝热还原的方法一步合成制备Ti Al合金。研究了不同温度和不同配铝量对渣—金分离,渣系的物相,合金组织、成分和物相的影响规律。通过理论分析可以看出,焙烧温度提高,渣的黏度降低,有利于实现渣金分离,从试验研究可以看出,温度为1 550℃时渣金分离效果较好;配铝量对还原渣和合金的成分有较大影响,配铝量不足,渣中有较多的低价钛氧化物存在,导致渣的熔点升高和黏度增大,Al/Ti O20.7时,渣—金分离较好;配铝量增加提高了合金收率及钛收率,且使钛铝合金中铝含量增加及物相发生转变,Al/Ti O2=0.7,合金中的主要物相Ti Al和Ti3Al,Al/Ti O2=0.9时,主要物相为Ti Al和Ti Al3。通过XRD、SEM和能谱分析可以看出,合金中夹杂的渣的主要物相为Ca Al4O7。  相似文献   

11.
陈越  卢育  汤皓元  杨钢  方树铭 《云南冶金》2013,(2):81-84,95
在熔制A1-Ti—B中间合金时,氟钛酸钾、氟硼酸钾的不同的加料方式直接影响整个化学反应过程,从而对Al—Ti—B中间合金的化学成分即Ti,B元素的吸收率有一定影响;在其它(反应温度、反应时间)相同的工艺参数条件下,通过不同的原料添加方式得到的Al—Ti—B中间合金成分的对比,结果表明,不同的加料方式使得A1-Ti—B中间合金成分存在较大的差异,进而影响中间合金TiB2和TiAl3颗粒的分布,形貌及其尺寸大小。本文重点讨论加料方式对铝钛硼中间合金细化剂成分的影响。  相似文献   

12.
采用Ti、Al、石墨和金刚石粉体为原料,通过自蔓延高温烧结制备Ti2AlC结合剂/金刚石复合材料,研究金刚石含量和粒度对该复合材料的物相组成与显微形貌的影响。结果表明,原料粉末发生自蔓延反应,可生成Ti2AlC基体相,同时亦生成TiC和Al_3Ti相。金刚石粒度较细(W5)时,金刚石表面C元素充分地与Ti反应生成TiC,同时基体主相变成TiC和Al,没有Ti_2AlC形成。当金刚石粒度较粗(30/40目)时,基体的主相为Ti_2AlC;金刚石与基体结合紧密。当添加金刚石粒度为120/140目时,基体的主相为Ti_2AlC和TiC。当采用170/200目金刚石为原料时,研究金刚石含量对复合材料基体组成与显微组织的影响时,发现原料中添加10%与20%的金刚石后得到的样品基体的主相为Ti_2AlC、TiC和Al3Ti相与金刚石;金刚石表面均包覆着良好的TiC与Ti_2AlC组织。但是当金刚石含量增加至30%时,基体的主相为TiC,同时含有少量的Ti_2AlC、Ti和Al_3Ti等相;金刚石表面受到一定程度的侵蚀,被一些TiC晶粒所包裹。提出一个Ti-Al-石墨-金刚石体系的自蔓延反应机制,即Ti和Al首先发生化学反应,生成Al_3Ti并放出大量的热,然后,原料中的石墨与金刚石表面转变的石墨都与Ti反应形成TiC,TiC与周围的Ti-Al相不断反应形成Ti2AlC。最后,基体主相为Ti_2AlC,金刚石表面亦形成Ti2AlC。  相似文献   

13.
采用X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等研究了氟盐-木屑法制备的Al-Ti-C母合金的组织性能。结果表明:由氟盐-木屑与铝液反应制备的Al-Ti-C母合金的合成过程包含以下几个阶段。(1)铝与钛氟酸钾反应置换出的钛与铝反应生成钛铝化合物;(2)木屑在高温条件下发生脱水、碳化反应,裂解产物二氧化碳、碳与铝反应生成碳铝金属化合物,与钛反应生成钛碳化合物;(3)钛铝、碳铝、钛碳化合物组成具有细化作用的Al-Ti-C母合金。合金的物相为α(Al)、铝钛化合物与碳铝化合物组成的共晶组织,其中α(Al)相的平均晶粒尺寸为10~60μm。铝钛化合物为棒状、骨骼状共晶组织并沿晶界分布,晶内可见针片状Al_3Ti,颗粒状TiC相聚合成团块状分布。木屑裂解产物水、二氧化碳与铝反应生成氧化铝和氢以渣-气共生的形式聚集于晶界。  相似文献   

14.
本文研究了在铝硅(Al13%Si)合金中添加微量元素Ti、Mg、Mn、Cu、Cr、Zn、Ni等,其对合金的组织结构、焊接、着色、成型性能、机械强度以及耐磨性带来的影响。实验结果表明,添加Cu、Cr、Ti、Mg、Zn、Ni元素可以有效提高Al-Si合金的耐腐蚀性能,其中添加Mg的效果尤为显著;而添加Ti、Mn则能够显著提高合金的韧性;添加Ni、Cr则能够显著提高Al-Si合金的硬度。然而,添加Ti、Mg、Mn、Cu、Cr、Zn、Ni等元素会以不同程度降低Al-Si合金的耐磨性能。  相似文献   

15.
分别对Al-TiO_2体系、Al-V_2O_5体系、Al-V_2O_5-TiO_2体系以及Al-V_2O_5-TiO_2-CaO体系单位质量反应热(q,J/g)进行了计算.考察了单位质量反应热对实验结果的影响.利用XRD物相分析仪、SEM扫描电镜以及ICP对合金进行了系统的分析.结果表明:Al-V_2O_5-TiO_2-CaO体系的单位质量反应热小于2 700 J/g,发热量不足,反应不能靠自热进行,需要对体系进行补充热量才能保证自蔓延反应顺利进行;CaO的加入会降低体系的单位质量反应热.合金的主要物相为Ti、Al金属间化合物、Al_2O_3及硅铁化合物.合金微观组织结构为基体相、板条状β相以及不规则的Al_2O_3夹杂相,单位质量反应热对合金中含硅相的尺寸及分布有较大影响.随着单位质量反应热的增加,合金中Ti的含量呈下降趋势,合金中的铝呈上升趋势,V、Fe、Si元素含量(质量分数/%)随单位质量反应热的增加基本保持不变.制备合金中Al的质量分数最低为9.35%,Fe最低为2.17%,Si最低为0.78%,V最高含量为4.30%.  相似文献   

16.
用Ti,Al元素混合粉(Ti-34%Al,Ti中含有1.5%TiC,质量分数),采用热等静压技术制备了TiAl合金,研究了热等静压压力对合金的密度,合金的微观结构以及物相等的影响,研究结果表明:随着热等静压压力的升高,合金的密度迅速增大,同时,合金中的Ti_3Al相消失,TiC与其它物质反应并在晶界处形成Ti_2Al相,随着压力的升高,合金收缩率的增大,细小的球状Ti_2AlC相会聚集在一起而变成针状Ti_2AlC,利用HIP技术可以很容易地制备出含C的TiAl复合材料。  相似文献   

17.
按不同比例混合的钛、铝和SiC粉在滚筒机中搅拌1小时,在氢气保护下,用功率为800W、3mm直径和0.5秒脉冲时间的CO_2激光熔化成直径为3mm的近似于球形块.熔后冷却速度约500K/s.金相、SEM、EDAX、TIM和STEM用于分析了各种成分熔化块的显微组织、成分和相组成.结果表明,在实验选用的激光熔化条件下,所有熔化块中的钛和铝粉均熔化成Ti一AI合金.而SiC粉只有部分溶解,致使基体中碳和硅富集.EDAX和TEM对成分和相结构分析表明,基体中铝含量从~15%增加到 42%(at%),而硅和碳从 6.8%降到2at%的各个样品在固化期间都形成三个相,Tic、β固溶体和 Tis (Si,Al)_3.球状或技晶状粒子TiC是SiC粒子溶解后与基体中Ti的反应产物,转变β相与具有密排六方(hCp)结构的硅化物 Tis (Si,Al)_3组成共晶型  相似文献   

18.
采用热浸镀法在Ti6Al4V合金表面制备出TiAl3金属间化合物涂层,并在不同温度下对浸镀后的试样进行热扩散处理.通过XRD、SEM等分析手段对涂层结构和成分进行测试分析,探讨涂层形成机理.结果表明:Ti6Al4V合金经750℃ 5 min热浸铝后,在其表面形成了由纯铝和TiAl3组成的涂层,TiAl3合金层厚约1.5 μm;经550℃退火5h后,TiAl3含量增多而纯铝层含量则相应减少,纯铝层几近消失,合金层厚度约为40μm,涂层致密;经930℃退火5h后,表面的涂层转化为单相的TiAl3,产物纯净,但涂层中出现了较多的孔洞,自涂层表面到钛合金基体,孔洞浓度呈梯度变化.  相似文献   

19.
通过微波烧结制备TiC/6061铝基复合材料,采用TEM、EDS、XRD分析该复合材料结合界面的结构、元素分布和相组成;从热力学角度研究新相的形成机理。结果表明:结合界面存在厚度约为100 nm的扩散型和反应型2种中间层,其与基体和增强相的邻接整洁、边界连续、结合紧密。扩散型界面,具有(111)Al//(240)TiC,]110[Al//[001]TiC的晶体学位向关系并形成半共格界面;反应型界面,由TiAl和微纳米级的Al4W相组成。界面TiAl相的热力学形成机理为Al和Ti元素通过扩散的方式首先生成TiAl3,之后随Ti元素的进一步扩散占据TiAl3中Al的位置,最终形成TiAl。  相似文献   

20.
丛红梅  邹仲芹 《山东冶金》2004,26(2):57-58,61
为了解合金元素Al、Ti对高锰铝青铜组织和性能的影响,采用石墨坩埚炉熔炼,制取了Al、Ti含量不同的高锰铝青铜试样,通过对试样进行金相组织检验和硬度测试分析,发现Al、Ti元素含量对高锰铝青铜组织和硬度的影响较大,确定了用该高锰铝青铜材料制造冶金备件产品时,Al元素的最佳含量为7.5%~8.2%、Ti元素的最佳含量为0.20%~0.25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号