首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了充分利用参考彩色图像与待处理灰度图像的关联关系,进一步提高图像颜色重建的自动化程度,利用稀疏表示理论和字典学习方法,提出一种自动全局图像着色算法.首先利用图像亮度、特征信息、图像颜色信息之间的相关性,依据参考图像训练出一个亮度-特征-颜色的联合字典;然后利用目标灰度图像的亮度和特征信息计算出其在该字典下的稀疏表示系数;最后利用上述联合字典与计算得到的稀疏表示系数进行灰度图像的颜色信息重建.文中算法无需进行图像分割,针对整幅图像进行着色,是一种自动的全局算法.实验结果表明,该算法可以有效地对灰度图像进行着色,对于色调单一的图像,着色效果更好.  相似文献   

2.
传统的总变差(TV)最小算法是一种基于压缩感知(CS)的经典迭代重建算法,可以从稀疏数据或含噪数据中高精度地重建图像.然而,TV算法在重建分段常数特征不明显的图像时可能会引入块状伪影,通过研究得出,在图像去噪中使用高阶总变差(HOTV)能有效压制TV模型引入的块状伪影.鉴于此,提出了一种HOTV图像重建模型及其Cham...  相似文献   

3.
徐敏达  李志华 《计算机科学》2018,45(12):210-216
针对不完全投影数据图像重建中出现伪影和噪点的问题,提出了L1与TV同时进行正则化的图像重建模型。基于该重建模型,通过将Bregman迭代和TV软阈值滤波相结合,进一步提出了一种图像重建算法。该算法首先将投影数据通过优化的Bregman迭代算法进行初步重建,然后使用TV软阈值滤波对改造的全变分模型进行二次重建,最后判断是否满足设定的收敛阈值,若满足则结束重建,输出重建图像,否则重复进行上述两步操作,直至迭代完成。实验采用不添加噪声的Shepp-Logan模型与添加噪声的Abdomen模型来验证算法的有效性,证明了所提出的算法在视觉上均优于ART,LSQR,LSQT-STF,BTV等典型的图像重建算法,同时通过多项评价指标对比表明所提出的算法有明显优势。实验结果表明,所提算法在图像重建中能够有效去除条形伪影并保护图像细节,同时具有良好的抗噪性。  相似文献   

4.
提出将基于压缩感知(CS)理论的稀疏梯度投影(GPSR)算法应用于电容层析成像(ECT)图像重建过程中.采用离散Fourier变换(DFT)基将原始图像灰度信号进行稀疏化处理;将ECT灵敏度矩阵的各行按随机顺序进行排列,得到ECT系统观测矩阵,同时将测量电容向量的各行按相同顺序进行排列,得到观测投影向量;使用GPSR算法进行图像重建.仿真实验结果表明:基于CS理论的GPSR(CS-GPSR)算法重建图像质量明显优于LBP算法和Landweber迭代算法.本文所述算法可实现较高精度的图像重建,为ECT图像重建的研究提供了一种新的手段.  相似文献   

5.
已有基于X射线吸收衬度机制的计算机断层成像( CT)技术很难对由轻元素构成的弱吸收物质进行高质量成像。 X射线相位衬度CT成像是对弱吸收物质具有超高分辨率的一种CT技术,但该技术成像时间长、所需X射线辐射剂量大,不利于临床推广应用,因此,研究稀疏投影角度条件下的X射线相位衬度CT图像重建问题,基于压缩感知图像重建理论,使用折射角信息减少X射线辐射剂量,提出一种X射线相位衬度CT图像重建算法。实验结果表明,与滤波反投影算法相比,该算法在稀疏投影角度下可以得到较高质量的重建图像,在实际数据实验中能获得较高的峰值信噪比和数值准确性。  相似文献   

6.
差分图像能够显示目标场景随时间的变化。采用一种基于图像特征的方法,由目标场景的一组压缩测量数据得到差分图像。该方法主要包含两方面的内容:首先设计最优的采样矩阵以得到压缩测量数据;采用闭环的迭代方法得到差分图像的估计值,包括基于l_2和l_1的方法。采用基于l_2范数的方法能够由压缩测量值直接估计出差分图像而不需要首先重建目标场景。这种方法主要利用了目标场景在连续时间点空间和时间上的相关性。基于l_1范数的方法主要采用一种改进的全变差方法和基追踪降噪方法。仿真表明了该方法的有效性。  相似文献   

7.
一种基于小波稀疏基的压缩感知图像融合算法   总被引:3,自引:0,他引:3  
随着压缩感知技术的发展,基于压缩感知的图像融合技术研究逐渐受到越来越多的重视。针对图像小波分解系数特点,提出了一种基于双放射状采样模式的压缩传感域图像融合算法。该算法首先通过双放射状采样模式获得待融合图像的小波稀疏域线性测量值;然后利用一种简单的绝对值最大融合规则直接在压缩感知域进行融合,最后通过最小全变分的方法重构融合图像。主客观实验结果表明,该算法具有良好的融合效果。  相似文献   

8.
利用压缩感知理论进行图像重构时,基于分块思想进行可有效提高重构速度,但同时会带来较强的块效应。为了解决该问题,提出了一种基于TV准则的图像分块重构算法。该算法将基于整幅图像时梯度计算方法进行改进,充分利用已重构块的边界像素信息,从而有效消除了图像的块效应。实验结果表明,提出的算法能够有效消除图像的块效应,提高重构图像的主客观质量,与TVAL3算法相比,重构图像的PSNR值最多提高了0.84 dB,时间最高可节省24.38%,算法尤其适用于低采样率的情况。  相似文献   

9.
近年来稀疏表示技术在信号处理、图像处理、目标识别、盲源分离等领域都有着突出的贡献. 为了全面的了解和分析现有稀疏表示优化算法, 首先回顾了稀疏表示技术的历史进程, 简单描述了稀疏表示技术的原理, 然后将稀疏表示优化算法分为贪心算法和约束算法以及其他算法三大类, 具体分析了前两种类别算法的原理和特征, 介绍了两类算法的代...  相似文献   

10.
基于压缩感知的图像盲水印算法   总被引:1,自引:0,他引:1  
温健阳  宫宁生  陈岩 《计算机科学》2016,43(Z11):377-382
针对现代数字水印的设计要求,结合压缩感知理论,提出一种图像盲水印算法。该算法利用自然载体图像在小波域中稀疏的特性,将加密后的水印嵌入载体图像离散小波变换系数中。提取水印时, 无需原始载体图像或其他先验知识,根据向量空间、矩阵方程的一些性质,以及压缩感知的重构算法,只需一个密钥(随机数种子)即可从嵌有水印的载体图像中精确提取水印并重构原始载体图像。实验证明,该水印算法具有良好的特性,能够满足实际应用的要求。  相似文献   

11.
针对目前的贪婪类算法在实际应用中出现的重构遮挡和虚假等问题,本文在分析该问题产生的原因基础上,提出了一种新的贪婪回溯子空间追踪(greedy backtracking subspace pursuit, GBSP)算法。该算法基本思想是在每次的迭代过程中,采用回溯反馈和贪婪精选的思路进行支撑集选择。具体而言,在原子识别阶段,从残差投影中挑选出绝对值最大的 ( 是信号稀疏度)个投影值位置,添加到候选支撑集中,为降低在此步骤中产生的错误概率,每次只将候选支撑集中的前s( )个最大值对应的位置添加到真实支撑集中进行更新;此后再进行投影计算和残差更新,直到完成支撑集的选择。由于新算法结合了正交匹配追踪算法和子空间追踪算法二者的优势,因此可较好的解决重构遮挡与虚假问题,使得压缩感知重构算法更具实用性。  相似文献   

12.
压缩感知重构算法在实际应用中需要预知信号稀疏度,而信号的稀疏度通常是未知的.为此,改进压缩采样匹配追踪(CoSaMP)算法的自适应性,提出一种稀疏度自适应贪婪算法.对信号稀疏度进行初始估计,结合SAMP算法思想,以残差值比对为终止条件,在CoSaMP算法框架下进行稀疏度逐步增大的递归运算,实现精确重构.仿真实验结果证明,该算法重构精度高、抗噪能力强,同时具备稀疏度自适应的特点.  相似文献   

13.
压缩传感,是近年来新出现的一种采样定理。它的特点是对信号进行采样所需要的条件远远小于Nyquist采样速率。这种采样定理要求信号是稀疏的或者是可压缩的,并能在采样时对信号数据进行压缩,然后通过非线性重建算法完美重建信号。它突破了Nyquist采样定理,因此具有广阔的发展前景。重建算法中有一类称为匹配追踪算法,文中围绕改进的匹配追踪算法在图像压缩中的应用展开了研究,对OMP算法、ROMP算法进行了实现,并对算法本身以及其重构效果做出了比较;针对按列处理速度较慢的缺点,使用了分块处理的方法,降低运算时测量矩阵的规模,实验表明,分块处理确实能够加快运算速度。由于自然信号进行稀疏变换后,稀疏度不确定,造成重构时迭代次数不够合理。针对这个现象,文中提出了如何确定合适的迭代次数的方法,提高重建的精确度。这个方法本身会消耗时间,可以在权衡了重构精确度要求和时间要求后确定是否使用。  相似文献   

14.
压缩感知理论是利用信号的稀疏性,通过少量的观测值就可以实现对该信号的精确重构。贪婪类算法是压缩感知重构步骤中广泛应用的一类算法。该文主要对该类算法中典型的三种算法在存在噪声环境中进行了综合分析比较。首先从理论方面分析了三种算法,给出了实现过程;然后在不同稀疏度情况下,对三种贪婪算法重构性能进行综合比较。根据理论分析结果和仿真结果,得出相应的结论。  相似文献   

15.
目的 压缩采样匹配追踪(CoSaMP)算法虽然引入回溯的思想,但其原子选择需要大量的观测值且在稀疏度估计不准确时,会降低信号重构精度,增加重构时间,降低重构效率。为提高CoSaMP算法的重构精度,改善算法的重构性能,提出了一种基于广义逆的分段迭代匹配追踪(StIMP)算法。方法 为保证迭代时挑选原子的精确性和快速性,对观测矩阵广义逆化,降低原子库中原子的相干性;原子更新结合正交匹配追踪(OMP)算法筛选原子的准确性与CoSaMP算法的回溯性,将迭代过程分为两个阶段:第1阶段利用OMP算法迭代K/2次;第2阶段以第1阶段OMP算法迭代所得的残差和原子为输入,并采用CoSaMP算法继续迭代,同时改变原子选择标准,从而精确快速地重构出稀疏信号。结果 对于1维的高斯随机信号,无论在不同的稀疏度还是观测值下,相比于OMP、CoSaMP、正则化正交匹配追踪(ROMP)算法和傅里叶类圆环压缩采样匹配追踪(FR-CoSaMP)算法,StIMP算法更加稳健,且具有更高重构成功率;对于2维图像信号,在各个采样率下,StIMP算法的峰值信噪比(PSNR)均高于其他重构算法,在采样率为0.7时,StIMP算法的平均PSNR值比OMP、CoSaMP、ROMP和FR-CoSaMP算法分别高2.14 dB、1.20 dB、3.67 dB和0.90 dB,平均重构时间也较OMP、CoSaMP和FR-CoSaMP算法短。结论 提出了一种改进的重构算法,对1维高斯随机信号和2维图像信号均有更好的重构效率和重构效果,与原算法和现有的主流图像重构方法相比,StIMP算法更具高效性和实用性。  相似文献   

16.
压缩传感理论是一种充分利用信号稀疏性或者可压缩性的全新信号采样理论。该理论表明,通过采集少量的信号测量值就能够实现可稀疏信号的精确重构。本文在研究现有经典重构算法的基础上,提出结合图像分块思想和回溯思想的分块子空间追踪算法(Block Subspace Pursuit, B_SP)用于压缩传感信号的重构。该算法以块结构获取图像,利用回溯过程实现支撑集的自适应筛选,最终实现图像信号的精确重构。实验结果表明,在相同测试条件下,该算法的重构效果无论从主观视觉上还是客观数据上都有不同程度的提高。  相似文献   

17.
基于压缩感知信号重建的自适应正交多匹配追踪算法*   总被引:3,自引:2,他引:1  
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,不同于传统的奈奎斯特采样定理,它指出只要信号具有稀疏性或可压缩性,就可以通过少量随机采样点来恢复原始信号。在研究和总结传统匹配算法的基础上,提出了一种新的自适应正交多匹配追踪算法(adaptive orthogonal multi matching pursuit,AOMMP)用于稀疏信号的重建。该算法在选择原子匹配迭代时分两个阶段,引入自适应和多匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,实现了原始信号的精确重建。最后与传统OMP算法  相似文献   

18.
重构算法是压缩感知的核心技术之一,直接决定着压缩感知能否可以在实际系统中进行应用。为提高压缩感知的重构精度同时缩短处理时间,本文引进加权与矩阵分块技术,与压缩采样匹配追踪( Compressive Sampling Matching Pur-suit, CoSaMP)算法相结合,使原始算法更加完善。仿真结果表明,当稀疏条件同等的情况下进行重构,改进的算法与原始算法相比重构质量有所提高。  相似文献   

19.
重构算法是压缩感知的核心技术之一,直接决定着压缩感知能否可以在实际系统中进行应用。为提高压缩感知的重构精度同时缩短处理时间,本文引进加权与矩阵分块技术,与压缩采样匹配追踪(Compressive Sampling Matching Pursuit, CoSaMP)算法相结合,使原始算法更加完善。仿真结果表明,当稀疏条件同等的情况下进行重构,改进的算法与原始算法相比重构质量有所提高。  相似文献   

20.
利用Matlab平台设计了基于压缩感知的图片压缩和加密GUI系统,主要解决海量图片的存储空间利用率低和图片数据安全问题.本系统采用小波变换基将图片系数稀疏化,将使用高斯随机矩阵进行压缩测量后得到的数据存储在服务器中,以减少存储空间,提高服务器空间利用率;同时将测量矩阵作为密钥进行加密,增加了图片信息的安全性,在需要访问时使用密钥矩阵和重构算法重构出原始图片.该GUI系统能够直观反映基于压缩感知的图片压缩与加密系统的工作过程.并且通过MCC将代码独立化为可执行exe文件,以便于直接对图片进行压缩、加密、存取和重构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号